
lhotse
Release 0.1

Lhotse development team

Nov 19, 2020

CONTENTS:

1 Getting started 1
1.1 About . 2
1.2 Installation . 2
1.3 Examples . 3

2 Representing a corpus 5
2.1 Recording manifest . 5
2.2 Supervision manifest . 6
2.3 Standard data preparation recipes . 7
2.4 Adding new corpora . 8

3 Cuts 9
3.1 Overview . 9
3.2 Types of cuts . 10
3.3 Cut manifests . 10
3.4 Python . 12
3.5 CLI . 12

4 Feature extraction 13
4.1 Storing features . 13
4.2 Creating custom feature extractor . 14
4.3 Storage backend details . 16
4.4 Python usage . 18
4.5 CLI usage . 18
4.6 Kaldi compatibility caveats . 18

5 Augmentation 19
5.1 Python usage . 19
5.2 CLI usage . 20

6 PyTorch Datasets 21

7 Kaldi Interoperability 27
7.1 Python . 27
7.2 CLI . 27

8 Command-line interface 29
8.1 lhotse obtain . 29
8.2 lhotse prepare . 30
8.3 lhotse cut . 33
8.4 lhotse manifest . 37

i

8.5 lhotse feat . 39
8.6 lhotse convert-kaldi . 40

9 API Reference 41
9.1 Datasets . 41
9.2 Recording manifests . 47
9.3 Supervision manifests . 50
9.4 Feature extraction and manifests . 52
9.5 Augmentation . 67
9.6 Cuts . 67
9.7 Recipes . 80
9.8 Kaldi conversion . 80
9.9 Others . 80

10 Indices and tables 81

Python Module Index 83

Index 85

ii

CHAPTER

ONE

GETTING STARTED

Lhotse is a Python library aiming to make speech and audio data preparation flexible and accessible to a wider com-
munity. Alongside k2, it is a part of the next generation Kaldi speech processing library.

1

https://github.com/kaldi-asr/kaldi
https://github.com/kaldi-asr/kaldi

lhotse, Release 0.1

1.1 About

1.1.1 Main goals

• Attract a wider community to speech processing tasks with a Python-centric design.

• Accommodate experienced Kaldi users with an expressive command-line interface.

• Provide standard data preparation recipes for commonly used corpora.

• Provide PyTorch Dataset classes for speech and audio related tasks.

• Flexible data preparation for model training with the notion of audio cuts.

• Efficiency, especially in terms of I/O bandwidth and storage capacity.

1.1.2 Main ideas

Like Kaldi, Lhotse provides standard data preparation recipes, but extends that with a seamless PyTorch integration
through task-specific Dataset classes. The data and meta-data are represented in human-readable text manifests and
exposed to the user through convenient Python classes.

Lhotse introduces the notion of audio cuts, designed to ease the training data construction with operations such as
mixing, truncation and padding that are performed on-the-fly to minimize the amount of storage required. Data aug-
mentation and feature extraction are supported both in pre-computed mode, with highly-compressed feature matrices
stored on disk, and on-the-fly mode that computes the transformations upon request. Additionally, Lhotse introduces
feature-space cut mixing to make the best of both worlds.

1.2 Installation

Lhotse supports Python version 3.7 and later.

1.2.1 Pip

Lhotse is available on PyPI:

pip install lhotse

To install the latest, unreleased version, do:

pip install git+https://github.com/lhotse-speech/lhotse

1.2.2 Development installation

For development installation, you can fork/clone the GitHub repo and install with pip:

git clone https://github.com/lhotse-speech/lhotse
cd lhotse
pip install -e '.[dev]'

Running unit tests
pytest test

2 Chapter 1. Getting started

lhotse, Release 0.1

This is an editable installation (-e option), meaning that your changes to the source code are automatically reflected
when importing lhotse (no re-install needed). The [dev] part means you’re installing extra dependencies that are
used to run tests, build documentation or launch jupyter notebooks.

1.3 Examples

We have example recipes showing how to prepare data and load it in Python as a PyTorch Dataset. They are located
in the examples directory.

A short snippet to show how Lhotse can make audio data prepartion quick and easy:

from lhotse import CutSet, Fbank, LilcomFilesWriter
from lhotse.dataset import VadDataset
from lhotse.recipes import prepare_switchboard

Prepare data manifests from a raw corpus distribution.
The RecordingSet describes the metadata about audio recordings;
the sampling rate, number of channels, duration, etc.
The SupervisionSet describes metadata about supervision segments:
the transcript, speaker, language, and so on.
swbd = prepare_switchboard('/export/corpora3/LDC/LDC97S62')

CutSet is the workhorse of Lhotse, allowing for flexible data manipulation.
We create 5-second cuts by traversing SWBD recordings in windows.
No audio data is actually loaded into memory or stored to disk at this point.
cuts = CutSet.from_manifests(

recordings=swbd['recordings'],
supervisions=swbd['supervisions']

).cut_into_windows(duration=5)

We compute the log-Mel filter energies and store them on disk;
Then, we pad the cuts to 5 seconds to ensure all cuts are of equal length,
as the last window in each recording might have a shorter duration.
The padding will be performed once the features are loaded into memory.
with LilcomFilesWriter('feats') as storage:

cuts = cuts.compute_and_store_features(
extractor=Fbank(),
storage=storage,

).pad(duration=5.0)

Construct a Pytorch Dataset class for Voice Activity Detection task:
dataset = VadDataset(cuts)
dataset[0]

The VadDataset will yield a pair of input and supervision tensors such as the following - the speech starts roughly
at the first second (100 frames):

1.3. Examples 3

lhotse, Release 0.1

4 Chapter 1. Getting started

CHAPTER

TWO

REPRESENTING A CORPUS

In Lhotse, we represent the data using YAML (more readable) or JSON (faster) manifests. For most audio corpora,
we will need two types of manifests to fully describe them: a recording manifest and a supervision manifest.

Caution: We show all the examples in YAML format for improved readability. However, when processing
medium/large datasets, we recommend to use JSON, which is much quicker to load and save.

2.1 Recording manifest

The recording manifest describes the recordings in a given corpus. It only contains information about the recording
itself - this manifest does not specify any segmentation information or supervision such as the transcript or the speaker.
It means that when a recording is a 1 hour long file, it is a single item in this manifest.

When coming from Kaldi, think of it as wav.scp on steroids, that also contains reco2dur, reco2num_samples and some
extra information.

This is a YAML manifest for a corpus with two recordings:

- id: 'recording-1'

sampling_rate: 8000
num_samples: 4000
duration: 0.5
sources:
- type: file

channels: [0]
source: 'test/fixtures/mono_c0.wav'

- type: file
channels: [1]
source: 'test/fixtures/mono_c1.wav'

- id: 'recording-2'
sampling_rate: 8000
num_samples: 8000
duration: 1.0
sources:
- type: file

channels: [0, 1]
source: 'test/fixtures/stereo.wav'

Each recording is described by:

• a unique id,

5

lhotse, Release 0.1

• its sampling rate,

• the number of samples,

• the duration in seconds,

• a list of audio sources.

Audio source is a useful abstraction for cases when the user has an audio format not supported by the library, or wants
to use shell tools such as SoX to perform some additional preprocessing. An audio source has the following properties:

• type: either file or command

• channel_ids: a list of integer identifiers for each channel in the recording

• source: in case of a file, it’s a path; in case of a command, its a shell command that will be expected to write a
WAVE file to stdout.

2.1.1 Python

In Python, the recording manifest is represented by classes RecordingSet, Recording, and AudioSource.
Example usage:

recordings = RecordingSet.from_yaml('audio.yml')
for recording in recordings:

Note: all time units in Lhotse are seconds
if recording.duration >= 7.5:

samples = recording.load_audio(
channels=0,
offset=2.5,
duration=5.0

)
Further sample processing

2.2 Supervision manifest

The supervision manifest contains the supervision information that we have about the recordings. In particular, it
involves the segmentation - there might be a single segment for a single utterance recording, and multiple segments
for a recording of a converstion.

When coming from Kaldi, think of it as a segments file on steroids, that also contains utt2spk, utt2gender, utt2dur, etc.

This is a YAML supervision manifest:

- id: 'segment-1'

recording_id: 'recording-2'
channel: 0
start: 0.1
duration: 0.3
text: 'transcript of the first segment'
language: 'english'
speaker: 'Norman Dyhrentfurth'

- id: 'segment-2'
recording_id: 'recording-2'

(continues on next page)

6 Chapter 2. Representing a corpus

lhotse, Release 0.1

(continued from previous page)

start: 0.5
duration: 0.4

Each segment is characterized by the following attributes:

• a unique id,

• a corresponding recording id,

• start time in seconds, relative to the beginning of the recording,

• the duration in seconds

Each segment may be assigned optional supervision information. In this example, the first segment contains the
transcription text, the language of the utterance and a speaker name. The second segment contains only the minimal
amount of information, which should be interpreted as: “this is some area of interest in the recording that we know
nothing else about.”

2.2.1 Python

In Python, the supervision manifest is represented by classes SupervisionSet and SupervisionSegment.
Example usage:

supervisions = SupervisionSet.from_segments([
SupervisionSegment(

id='segment-1',
recording_id='recording-1',
start=0.5,
duration=10.7,
text='quite a long utterance'

)
])
print(f'There is {len(supervisions)} supervision in the set.')

2.3 Standard data preparation recipes

We provide a number of standard data preparation recipes. By that, we mean a collection of a Python function + a CLI
tool that create the manifests given a corpus directory.

Currently supported corpora:

• AMI lhotse.recipes.prepare_ami()

• English Broadcast News 1997 lhotse.recipes.prepare_broadcast_news()

• Full or Mini LibriSpeech lhotse.recipes.prepare_librispeech()

• Heroico lhotse.recipes.prepare_heroico()

• LJ Speech lhotse.recipes.prepare_ljspeech()

• Mini LibriMix lhotse.recipes.prepare_librimix()

• Switchboard lhotse.recipes.prepare_switchboard()

• TED-LIUM v3 lhotse.recipes.prepare_tedlium()

2.3. Standard data preparation recipes 7

lhotse, Release 0.1

2.4 Adding new corpora

General pointers:

• Each corpus has a dedicated Python file in lhotse/recipes.

• For publicly available corpora that can be freely downloaded, we usually define a function called download,
download_and_untar, etc.

• Each data preparation recipe should expose a single function called prepare_X, with X being the name
of the corpus, that produces dicts like: {'recordings': <RecordingSet>, 'supervisions':
<SupervisionSet>} for the data in that corpus.

• When a corpus defines standard split (e.g. train/dev/test), we return a dict with the follow-
ing structure: {'train': {'recordings': <RecordingSet>, 'supervisions':
<SupervisionSet>}, 'dev': ...}

• Some corpora (like LibriSpeech) come with pre-segmented recordings. In these cases, the
SupervisionSegment will exactly match the Recording duration (and there will likely be exactly one
segment corresponding to any recording).

• Corpora with longer recordings (e.g. conversational, like Switchboard) should have exactly one Recording
object corresponding to a single conversation/session, that spans its whole duration. Each speech segment in
that recording should be represented as a SupervisionSegment with the same recording_id value.

• Corpora with multiple channels for each session (e.g. AMI) should have a single Recording with multiple
AudioSource objects - each corresponding to a separate channel.

8 Chapter 2. Representing a corpus

CHAPTER

THREE

CUTS

3.1 Overview

Audio cuts are one of the main Lhotse features. Cut is a part of a recording, but it can be longer than a supervision
segment, or even span multiple segments. The regions without a supervision are just audio that we don’t assume we
know anything about - there may be silence, noise, non-transcribed speech, etc. Task-specific datasets can leverage
this information to generate masks for such regions.

Currently, cuts are created after the feature extraction step (we might still change that). It means that every cut also
represents the extracted features for the part of recording it represents.

Cuts can be modified using three basic operations: truncation, mixing and appending. These operations are not
immediately performed on the audio or features. Instead, we create new Cut objects, possibly of different types,
that represent a cut after modification. We only modify the actual audio and feature matrices once the user calls
load_features() or load_audio().

This design allows for quick on-the-fly data augmentation. In each training epoch, we may mix the cuts with different
noises, SNRs, etc. We also do not need to re-compute and store the features for different mixes, as the mixing process
consists of element-wise addition of the spectral energies (possibly with additional exp and log operations for log-
energies). As of now, we only support this dynamic mix on log Mel energy (_fbank_) features. We anticipate to add
support for other types of features as well.

The common attributes for all cut objects are the following:

• id

• duration

• supervisions

• num_frames

• num_features

• load_features()

• truncate()

• mix()

• append()

• from_dict()

9

lhotse, Release 0.1

3.2 Types of cuts

There are three cut classes:

• Cut, also referred to as “simple cut”, can be traced back to a single particular recording (and channel).

• PaddingCut is an “artificial” recording used for padding other Cuts through mixing to achieve uniform dura-
tion.

• MixedCut is a collection of Cut and PaddingCut objects, together with mix parameters: offset and desired
sound-to-noise ratio (SNR) for each track. Both the offset and the SNR are relative to the first cut in the mix.

Each of these types has additional attributes that are not common - e.g., it makes sense to specify start for Cut to
locate it in the source recording, but it is undefined for MixedCut and PaddingCut.

3.3 Cut manifests

All cut types can be stored in the YAML manifests. An example manifest with simple cuts might look like:

- duration: 10.0
features:
channels: 0
duration: 16.04
num_features: 23
num_frames: 1604
recording_id: recording-1
start: 0.0
storage_path: test/fixtures/libri/storage/dc2e0952-f2f8-423c-9b8c-f5481652ee1d.llc
storage_type: lilcom
type: fbank

id: 849e13d8-61a2-4d09-a542-dac1aee1b544
start: 0.0
supervisions: []
type: Cut

Notice that the cut type is specified in YAML. The supervisions list might be empty - some tasks do not need them,
e.g. unsupervised training, source separation, or speech enhancement.

Mixed cuts look differently in the manifest:

- id: mixed-cut-id
tracks:
- cut:

duration: 7.78
features:
channels: 0
duration: 7.78
type: fbank
num_frames: 778
num_features: 23
recording_id: 7850-286674-0014
start: 0.0
storage_path: test/fixtures/mix_cut_test/feats/storage/9dc645db-cbe4-4529-

→˓85e4-b6ed4f59c340.llc
storage_type: lilcom

id: 0c5fdf79-efe7-4d45-b612-3d90d9af8c4e

(continues on next page)

10 Chapter 3. Cuts

lhotse, Release 0.1

(continued from previous page)

start: 0.0
supervisions:
- channel: 0
duration: 7.78
gender: f
id: 7850-286674-0014
language: null
recording_id: 7850-286674-0014
speaker: 7850-286674
start: 0.0
text: SURE ENOUGH THERE HE CAME THROUGH THE SHALLOW WATER HIS WET BACK

→˓SHELL PARTLY
OUT OF IT AND SHINING IN THE SUNLIGHT

offset: 0.0
- cut:

duration: 9.705
features:
channels: 0
duration: 9.705
type: fbank
num_frames: 970
num_features: 23
recording_id: 2412-153948-0014
start: 0.0
storage_path: test/fixtures/mix_cut_test/feats/storage/5078e7eb-57a6-4000-

→˓b0f2-fa4bf9c52090.llc
storage_type: lilcom

id: 78bef88d-e62e-4cfa-9946-a1311442c6f7
start: 0.0
supervisions:
- channel: 0
duration: 9.705
gender: f
id: 2412-153948-0014
language: null
recording_id: 2412-153948-0014
speaker: 2412-153948
start: 0.0
text: THERE WAS NO ONE IN THE WHOLE WORLD WHO HAD THE SMALLEST IDEA SAVE

→˓THOSE
WHO WERE THEMSELVES ON THE OTHER SIDE OF IT IF INDEED THERE WAS ANY ONE

→˓AT ALL
COULD I HOPE TO CROSS IT

offset: 3.89
snr: 20.0

type: MixedCut

Mixed cuts literally consist of simple cuts, their feature descriptions, and their supervisions. These are combined
together when a user queries MixedCut for supervisions, features, or duration. Note that the first simple cut is
missing an SNR field - it is optional (i.e. None). That is because the semantics of 0 SNR are: re-scale one of the
signals, so that the SNR between two signals is zero. We denote no re-scaling by not specifying the SNR at all.

The amount of text in these manifests can be considerable in larger datasets, but they are highly compressible. We
support their automated (de-)compression with gzip - it’s sufficient to add “.gz” at the end of filename when writing
or reading, both in Python classes and the CLI tools.

3.3. Cut manifests 11

lhotse, Release 0.1

3.4 Python

Some examples of how cuts can be manipulated to create a desired dataset for model training.

cuts = CutSet.from_yaml('cuts.yml')
Reject too short segments
cuts = cuts.filter(lambda cut: cut.duration >= 3.0)
Pad short segments with silence to 5 seconds.
cuts = cuts.pad(desired_duration=5.0)
Truncate longer segments to 5 seconds.
cuts = cuts.truncate(max_duration=5.0, offset_type='random')
Save cuts
cuts.to_yaml('cuts-5s.yml')

3.5 CLI

Analogous examples of how to perform the same operations in the terminal:

Reject short segments
lhotse yaml filter duration>=3.0 cuts.yml cuts-3s.yml
Pad short segments to 5 seconds.
lhotse cut pad --duration 5.0 cuts-3s.yml cuts-5s-pad.yml
Truncate longer segments to 5 seconds.
lhotse cut truncate --max-duration 5.0 --offset-type random cuts-5s-pad.yml cuts-5s.
→˓yml

12 Chapter 3. Cuts

CHAPTER

FOUR

FEATURE EXTRACTION

Feature extraction in Lhotse is currently based exclusively on the Torchaudio library. We support spectrograms, log-
Mel energies (fbank) and MFCCs. Fbank are the default features. We also support custom defined feature extractors
via a Python API (which won’t be available in the CLI, unless there is a popular demand for that).

We are striving for a simple relation between the audio duration, the number of frames, and the frame shift. You only
need to know two of those values to compute the third one, regardless of the frame length. This is equivalent of having
Kaldi’s snip_edges parameter set to False.

4.1 Storing features

Features in Lhotse are stored as numpy matrices with shape (num_frames, num_features). By default, we
use lilcom for lossy compression and reduce the size on the disk by about 3x. The lilcom compression method uses a
fixed precision that doesn’t depend on the magnitude of the thing being compressed, so it’s better suited to log-energy
features than energy features. We currently support two kinds of storage:

• HDF5 files with multiple feature matrices

• directory with feature matrix per file

We retrieve the arrays by loading the whole feature matrix from disk and selecting the relevant region (e.g. specified
by a cut). Therefore it makes sense to cut the recordings first, and then extract the features for them to avoid loading
unnecessary data from disk (especially for very long recordings).

There are two types of manifests:

• one describing the feature extractor;

• one describing the extracted feature matrices.

The feature extractor manifest is mapped to a Python configuration dataclass. An example for spectrogram:

dither: 0.0
energy_floor: 1e-10
frame_length: 0.025
frame_shift: 0.01
min_duration: 0.0
preemphasis_coefficient: 0.97
raw_energy: true
remove_dc_offset: true
round_to_power_of_two: true
window_type: povey
type: spectrogram

And the corresponding configuration class:

13

https://pytorch.org/audio/
https://github.com/danpovey/lilcom

lhotse, Release 0.1

class lhotse.features.SpectrogramConfig(dither: float = 0.0, window_type: str = 'povey',
frame_length: float = 0.025, frame_shift:
float = 0.01, remove_dc_offset: bool = True,
round_to_power_of_two: bool = True, en-
ergy_floor: float = 1e-10, min_duration: float
= 0.0, preemphasis_coefficient: float = 0.97,
raw_energy: bool = True)

dither: float = 0.0

window_type: str = 'povey'

frame_length: float = 0.025

frame_shift: float = 0.01

remove_dc_offset: bool = True

round_to_power_of_two: bool = True

energy_floor: float = 1e-10

min_duration: float = 0.0

preemphasis_coefficient: float = 0.97

raw_energy: bool = True

__init__(dither=0.0, window_type='povey', frame_length=0.025, frame_shift=0.01, re-
move_dc_offset=True, round_to_power_of_two=True, energy_floor=1e-10,
min_duration=0.0, preemphasis_coefficient=0.97, raw_energy=True)

Initialize self. See help(type(self)) for accurate signature.

The feature matrices manifest is a list of documents. These documents contain the information necessary to tie the
features to a particular recording: start, duration, channel and recording_id. They currently do not
have their own IDs. They also provide some useful information, such as the type of features, number of frames and
feature dimension. Finally, they specify how the feature matrix is stored with storage_type (currently numpy or
lilcom), and where to find it with the storage_path. In the future there might be more storage types.

- channels: 0
duration: 16.04
num_features: 23
num_frames: 1604
recording_id: recording-1
start: 0.0
storage_path: test/fixtures/libri/storage/dc2e0952-f2f8-423c-9b8c-f5481652ee1d.llc
storage_type: lilcom
type: fbank

4.2 Creating custom feature extractor

There are two components needed to implement a custom feature extractor: a configuration and the extractor itself.
We expect the configuration class to be a dataclass, so that it can be automatically mapped to dict and serialized. The
feature extractor should inherit from FeatureExtractor, and implement a small number of methods/properties.
The base class takes care of initialization (you need to pass a config object), serialization to YAML, etc. A minimal,
complete example of adding a new feature extractor:

14 Chapter 4. Feature extraction

lhotse, Release 0.1

from scipy.signal import stft

@dataclass
class ExampleFeatureExtractorConfig:

frame_len: Seconds = 0.025
frame_shift: Seconds = 0.01

class ExampleFeatureExtractor(FeatureExtractor):
"""
A minimal class example, showing how to implement a custom feature extractor in

→˓Lhotse.
"""
name = 'example-feature-extractor'
config_type = ExampleFeatureExtractorConfig

def extract(self, samples: np.ndarray, sampling_rate: int) -> np.ndarray:
f, t, Zxx = stft(

samples,
sampling_rate,
nperseg=round(self.config.frame_len * sampling_rate),
noverlap=round(self.frame_shift * sampling_rate)

)
Note: returning a magnitude of the STFT might interact badly with lilcom

→˓compression,
as it performs quantization of the float values and works best with log-

→˓scale quantities.
It's advised to turn lilcom compression off, or use log-scale, in such

→˓cases.
return np.abs(Zxx)

@property
def frame_shift(self) -> Seconds:

return self.config.frame_shift

def feature_dim(self, sampling_rate: int) -> int:
return (sampling_rate * self.config.frame_len) / 2 + 1

The overridden members include:

• name for easy debuggability/automatic re-creation of an extractor;

• config_type which specifies the complementary configuration class type;

• extract() where the actual computation takes place;

• frame_shift property, which is key to know the relationship between the duration and the number of frames.

• feature_dim() method, which accepts the sampling_rate as its argument, as some types of features
(e.g. spectrogram) will depend on that.

Additionally, there are two extra methods than when overridden, allow to perform dynamic feature-space mixing (see
Cuts):

@staticmethod
def mix(features_a: np.ndarray, features_b: np.ndarray, gain_b: float) -> np.ndarray:

raise ValueError(f'The feature extractor\'s "mix" operation is undefined.')

@staticmethod
(continues on next page)

4.2. Creating custom feature extractor 15

lhotse, Release 0.1

(continued from previous page)

def compute_energy(features: np.ndarray) -> float:
raise ValueError(f'The feature extractor\'s "compute_energy" is undefined.')

They are:

• mix() which specifies how to mix two feature matrices to obtain a new feature matrix representing the sum of
signals;

• compute_energy() which specifies how to obtain a total energy of the feature matrix, which is needed to
mix two signals with a specified SNR. E.g. for a power spectrogram, this could be the sum of every time-
frequency bin. It is expected to never return a zero.

During the feature-domain mix with a specified signal-to-noise ratio (SNR), we assume that one of the signals is a
reference signal - it is used to initialize the FeatureMixer class. We compute the energy of both signals and scale
the non-reference signal, so that its energy satisfies the requested SNR. The scaling factor (gain) is computed using
the following formula:

1

2 reference_feats = self.tracks[0]
3 num_frames_offset = compute_num_frames(duration=offset, frame_shift=self.

→˓frame_shift)
4 current_num_frames = reference_feats.shape[0]
5 incoming_num_frames = feats.shape[0] + num_frames_offset
6 mix_num_frames = max(current_num_frames, incoming_num_frames)
7

8 feats_to_add = feats
9

Note that we interpret the energy and the SNR in a power quantity context (as opposed to root-power/field quantities).

4.3 Storage backend details

Lhotse can be extended with additional storage backends via two abstractions: FeaturesWriter and
FeaturesReader. We currently implement the following writers (and their corresponding readers):

• lhotse.features.io.LilcomFilesWriter

• lhotse.features.io.NumpyFilesWriter

• lhotse.features.io.LilcomHdf5Writer

• lhotse.features.io.NumpyHdf5Writer

The FeaturesWriter and FeaturesReader API is as follows:

class lhotse.features.io.FeaturesWriter
FeaturesWriter defines the interface of how to store numpy arrays in a particular storage backend. This
backend could either be:

• separate files on a local filesystem;

• a single file with multiple arrays;

• cloud storage;

• etc.

Each class inheriting from FeaturesWriter must define:

16 Chapter 4. Feature extraction

https://en.wikipedia.org/wiki/Power,_root-power,_and_field_quantities

lhotse, Release 0.1

• the write() method, which defines the storing operation (accepts a key used to place the value
array in the storage);

• the storage_path() property, which is either a common directory for the files, the name of the
file storing multiple arrays, name of the cloud bucket, etc.

• the name() property that is unique to this particular storage mechanism - it is stored in the features
manifests (metadata) and used to automatically deduce the backend when loading the features.

Each FeaturesWriter can also be used as a context manager, as some implementations might need to free
a resource after the writing is finalized. By default nothing happens in the context manager functions, and this
can be modified by the inheriting subclasses.

Example:

with MyWriter(‘some/path’) as storage: extractor.extract_from_recording_and_store(recording, stor-
age)

The features loading must be defined separately in a class inheriting from FeaturesReader.

abstract property name

Return type str

abstract property storage_path

Return type str

abstract write(key, value)

Return type str

class lhotse.features.io.FeaturesReader
FeaturesReader defines the interface of how to load numpy arrays from a particular storage backend. This
backend could either be:

• separate files on a local filesystem;

• a single file with multiple arrays;

• cloud storage;

• etc.

Each class inheriting from FeaturesReader must define:

• the read() method, which defines the loading operation (accepts the key to locate the array in the
storage and return it). The read method should support selecting only a subset of the feature matrix,
with the bounds expressed as arguments left_offset_frames and right_offset_frames.
It’s up to the Reader implementation to load only the required part or trim it to that range only after
loading. It is assumed that the time dimension is always the first one.

• the name() property that is unique to this particular storage mechanism - it is stored in the features
manifests (metadata) and used to automatically deduce the backend when loading the features.

The features writing must be defined separately in a class inheriting from FeaturesWriter.

abstract property name

Return type str

abstract read(key, left_offset_frames=0, right_offset_frames=None)

Return type ndarray

4.3. Storage backend details 17

lhotse, Release 0.1

4.4 Python usage

The feature manifest is represented by a FeatureSet object. Feature extractors have a class that represents both
the extract and its configuration, named FeatureExtractor. We provide a utility called FeatureSetBuilder
that can process a RecordingSet in parallel, store the feature matrices on disk and generate a feature manifest.

For example:

from lhotse import RecordingSet, Fbank, LilcomFilesWriter

Read a RecordingSet from disk
recording_set = RecordingSet.from_yaml('audio.yml')
Create a log Mel energy filter bank feature extractor with default settings
feature_extractor = Fbank()
Create a feature set builder that uses this extractor and stores the results in a
→˓directory called 'features'
with LilcomFilesWriter('features') as storage:

builder = FeatureSetBuilder(feature_extractor=feature_extractor, storage=storage)
Extract the features using 8 parallel processes, compress, and store them on in

→˓'features/storage/' directory.
Then, return the feature manifest object, which is also compressed and
stored in 'features/feature_manifest.json.gz'
feature_set = builder.process_and_store_recordings(

recordings=recording_set,
num_jobs=8

)

4.5 CLI usage

An equivalent example using the terminal:

lhotse write-default-feature-config feat-config.yml
lhotse make-feats -j 8 --storage-type lilcom_files -f feat-config.yml audio.yml
→˓features/

4.6 Kaldi compatibility caveats

We are relying on Torchaudio Kaldi compatibility module, so most of the spectrogram/fbank/mfcc parameters are
the same as in Kaldi. However, we are not fully compatible - Kaldi computes energies from a signal scaled between
-32,768 to 32,767, while Torchaudio scales the signal between -1.0 and 1.0. It results in Kaldi energies being signifi-
cantly greater than in Lhotse. By default, we turn off dithering for deterministic feature extraction.

18 Chapter 4. Feature extraction

https://pytorch.org/audio/
https://pytorch.org/audio/

CHAPTER

FIVE

AUGMENTATION

We support time-domain data augmentation via WavAugment and torchaudio libraries. They both leverage libsox to
provide about 50 different audio effects like reverb, speed perturbation, pitch, etc.

Since WavAugment depends on libsox, it is an optional depedency for Lhotse, which can be installed using tools/
install_wavaugment.sh (for convenience, the script will also compile libsox from source - note that the
WavAugment authors warn their library is untested on Mac).

Torchaudio also depends on libsox, but seems to provide it when installed via anaconda. This functionality is only
available with PyTorch 1.7+ and torchaudio 0.7+.

Using Lhotse’s Python API, you can compose an arbitrary effect chain. On the other hand, for the CLI we pro-
vide a small number of predefined effect chains, such as pitch (pitch shifting), reverb (reverberation), and
pitch_reverb_tdrop (pitch shift + reverberation + time dropout of a 50ms chunk).

5.1 Python usage

Warning: When using WavAugment or torchaudio data augmentation together with a multiprocessing ex-
ecutor (i.e. ProcessPoolExecutor), it is necessary to start it using the “spawn” context. Otherwise the
process may hang (or terminate) on some systems due to libsox internals not handling forking well. Use:
ProcessPoolExecutor(..., mp_context=multiprocessing.get_context("spawn")).

Lhotse’s FeatureExtractor and Cut offer convenience functions for feature extraction with data augmentation
performed before that. These functions expose an optional parameter called augment_fn that has a signature like:

def augment_fn(audio: Union[np.ndarray, torch.Tensor], sampling_rate: int) -> np.
→˓ndarray: ...

For torchaudio we define a SoxEffectTransform class:

class lhotse.augmentation.SoxEffectTransform(effects)
Class-style wrapper for torchaudio SoX effect chains. It should be initialized with a config-like list of items
that define SoX effect to be applied. It supports sampling randomized values for effect parameters through the
RandomValue wrapper.

Example:

>>> audio = np.random.rand(16000)
>>> augment_fn = SoxEffectTransform(effects=[
>>> ['reverb', 50, 50, RandomValue(0, 100)],
>>> ['speed', RandomValue(0.9, 1.1)],

(continues on next page)

19

https://github.com/facebookresearch/WavAugment
https://pytorch.org/audio/stable/index.html

lhotse, Release 0.1

(continued from previous page)

>>> ['rate', 16000],
>>>])
>>> augmented = augment_fn(audio, 16000)

See SoX manual or torchaudio.sox_effects.effect_names() for the list of possible effects. The
parameters and the meaning of the values are explained in SoX manual/help.

__init__(effects)
Initialize self. See help(type(self)) for accurate signature.

sample_effects()
Resolve a list of effects, replacing random distributions with samples from them. It converts every number
to string to match the expectations of torchaudio.

Return type List[List[str]]

We define a WavAugmenter class that is a thin wrapper over WavAugment. It can either be created with a prede-
fined, or a user-supplied effect chain.

class lhotse.augmentation.WavAugmenter(effect_chain)
A wrapper class for WavAugment’s effect chain. You should construct the augment.EffectChain before-
hand and pass it on to this class.

This class is only available when WavAugment is installed, as it is an optional dependency for Lhotse. It can be
installed using the script in “<main-repo-directory>/tools/install_wavaugment.sh”

For more details on how to augment, see https://github.com/facebookresearch/WavAugment

__init__(effect_chain)
Initialize self. See help(type(self)) for accurate signature.

static create_predefined(name, sampling_rate, **kwargs)
Create a WavAugmenter class with one of the predefined augmentation setups available in Lhotse. Some
examples are: “pitch”, “reverb”, “pitch_reverb_tdrop”.

Parameters

• name (str) – the name of the augmentation setup.

• sampling_rate (int) – expected sampling rate of the input audio.

Return type WavAugmenter

5.2 CLI usage

To extract features from augmented audio, you can pass an extra --augmentation argument to lhotse feat
extract.

lhotse feat extract -a pitch ...

You can create a dataset with both clean and augmented features by combining different variants of extracted features,
e.g.:

lhotse feat extract audio.yml clean_feats/
lhotse feat extract -a pitch audio.yml pitch_feats/
lhotse feat extract -a reverb audio.yml reverb_feats/
lhotse yaml combine {clean,pitch,reverb}_feats/feature_manifest.yml.gz combined_feats.
→˓yml

20 Chapter 5. Augmentation

https://github.com/facebookresearch/WavAugment

CHAPTER

SIX

PYTORCH DATASETS

Caution: Lhotse datasets are still very much in the works and are subject to breaking changes.

We supply subclasses of the torch.data.Dataset for various audio/speech tasks. These datasets are created
from CutSet objects and load the features from disk into memory on-the-fly. Each dataset accepts an optional
root_dir argument which is used as a prefix for the paths to features and audio.

Currently, we provide the following:

class lhotse.dataset.diarization.DiarizationDataset(cuts, min_speaker_dim=None,
global_speaker_ids=False)

A PyTorch Dataset for the speaker diarization task. Our assumptions about speaker diarization are the following:

• we assume a single channel input (for now), which could be either a true mono signal or a beam-
forming result from a microphone array.

• we assume that the supervision used for model training is a speech activity matrix, with one row
dedicated to each speaker (either in the current cut or the whole dataset, depending on the set-
tings). The columns correspond to feature frames. Each row is effectively a Voice Activity
Detection supervision for a single speaker. This setup is somewhat inspired by the TS-VAD paper:
https://arxiv.org/abs/2005.07272

Each item in this dataset is a dict of:

{
'features': (T x F) tensor
'speaker_activity': (num_speaker x T) tensor

}

Constructor arguments:

Parameters

• cuts (CutSet) – a CutSet used to create the dataset object.

• min_speaker_dim (Optional[int]) – optional int, when specified it will enforce that
the matrix shape is at least that value (useful for datasets like CHiME 6 where the number
of speakers is always 4, but some cuts might have less speakers than that).

• global_speaker_ids (bool) – a bool, indicates whether the same speaker should al-
ways retain the same row index in the speaker activity matrix (useful for speaker-dependent
systems)

• root_dir – a prefix path to be attached to the feature files paths.

21

https://arxiv.org/abs/2005.07272

lhotse, Release 0.1

__init__(cuts, min_speaker_dim=None, global_speaker_ids=False)
Initialize self. See help(type(self)) for accurate signature.

class lhotse.dataset.unsupervised.UnsupervisedDataset(cuts)
Dataset that contains no supervision - it only provides the features extracted from recordings. The returned
features are a torch.Tensor of shape (T x F), where T is the number of frames, and F is the feature
dimension.

__init__(cuts)
Initialize self. See help(type(self)) for accurate signature.

class lhotse.dataset.unsupervised.UnsupervisedWaveformDataset(cuts)
A variant of UnsupervisedDataset that provides waveform samples instead of features. The output is a tensor of
shape (C, T), with C being the number of channels and T the number of audio samples. In this implemenation,
there will always be a single channel.

class lhotse.dataset.unsupervised.DynamicUnsupervisedDataset(feature_extractor,
cuts, aug-
ment_fn=None)

An example dataset that shows how to use on-the-fly feature extraction in Lhotse. It accepts two ad-
ditional inputs - a FeatureExtractor and an optional WavAugmenter for time-domain data augmentation..
The output is approximately the same as that of the UnsupervisedDataset - there might be slight
differences for MixedCut``s, because this dataset mixes them in the time domain,
and ``UnsupervisedDataset does that in the feature domain. Cuts that are not mixed will yield identi-
cal results in both dataset classes.

__init__(feature_extractor, cuts, augment_fn=None)
Initialize self. See help(type(self)) for accurate signature.

class lhotse.dataset.speech_recognition.SpeechRecognitionDataset(cuts)
The PyTorch Dataset for the speech recognition task. Each item in this dataset is a dict of:

{
'features': (T x F) tensor,
'text': string,
'supervisions_mask': (T) tensor

}

The supervisions_mask field is a mask that specifies which frames are covered by a supervision by as-
signing a value of 1 (in this case: segments with transcribed speech contents), and which are not by asigning a
value of 0 (in this case: padding, contextual noise, or in general the acoustic context without transcription).

In the future, will be extended by graph supervisions.

__init__(cuts)
Initialize self. See help(type(self)) for accurate signature.

class lhotse.dataset.speech_recognition.K2SpeechRecognitionIterableDataset(cuts,
max_frames=26000,
max_cuts=None,
shuf-
fle=False,
con-
cat_cuts=True,
con-
cat_cuts_gap=1.0,
con-
cat_cuts_duration_factor=2)

The PyTorch Dataset for the speech recognition task using K2 library.

22 Chapter 6. PyTorch Datasets

lhotse, Release 0.1

This dataset internally batches and collates the Cuts and should be used with PyTorch DataLoader with argument
batch_size=None to work properly. The batch size is determined automatically to satisfy the constraints of
max_frames and max_cuts.

This dataset will automatically partition itself when used with a multiprocessing DataLoader (i.e. the same cut
will not appear twice in the same epoch).

By default, we “pack” the batches to minimize the amount of padding - we achieve that by concatenating the
cuts’ feature matrices with a small amount of silence (padding) in between.

Each item in this dataset is a dict of:

{
'features': float tensor of shape (B, T, F)
'supervisions': [

{
'cut_id': List[str] of len S
'sequence_idx': Tensor[int] of shape (S,)
'text': List[str] of len S
'start_frame': Tensor[int] of shape (S,)
'num_frames': Tensor[int] of shape (S,)

}
]

}

Dimension symbols legend: * B - batch size (number of Cuts) * S - number of supervision segments (greater or
equal to B, as each Cut may have multiple supervisions) * T - number of frames of the longest Cut * F - number
of features

The ‘sequence_idx’ field is the index of the Cut used to create the example in the Dataset.

__init__(cuts, max_frames=26000, max_cuts=None, shuffle=False, concat_cuts=True, con-
cat_cuts_gap=1.0, concat_cuts_duration_factor=2)

K2 ASR IterableDataset constructor.

Parameters

• cuts (CutSet) – the CutSet to sample data from.

• max_frames (int) – The maximum number of feature frames that we’re going to put
in a single batch. The padding frames do not contribute to that limit, since we pack the
batch by default to minimze the amount of padding.

• max_cuts (Optional[int]) – The maximum number of cuts sampled to form a mini-
batch. By default, this constraint is off.

• shuffle (bool) – When True, the cuts will be shuffled at the start of iteration. Con-
venient when mini-batch loop is inside an outer epoch-level loop, e.g.: for epoch in
range(10): for batch in dataset: . . . as every epoch will see a different cuts order.

• concat_cuts (bool) – When True, we will concatenate the cuts to minimize the total
amount of padding; e.g. instead of creating a batch with 40 examples, we will merge some
of the examples together adding some silence between them to avoid a large number of
padding frames that waste the computation. Enabled by default.

• concat_cuts_gap (float) – The duration of silence in seconds that is inserted be-
tween the cuts; it’s goal is to let the model “know” that there are separate utterances in a
single example.

• concat_cuts_duration_factor (float) – Determines the maximum duration of
the concatenated cuts; by default it’s twice the duration of the longest cut in the batch.

23

lhotse, Release 0.1

lhotse.dataset.speech_recognition.concat_cuts(cuts, gap=1.0, max_duration=None)
We’re going to concatenate the cuts to minimize the amount of total padding frames used. This is actually
solving a knapsack problem. In this initial implementation we’re using a greedy approach: going from the back
(i.e. the shortest cuts) we’ll try to concat them to the longest cut that still has some “space” at the end.

Parameters

• cuts (List[Union[Cut, MixedCut, PaddingCut]]) – a list of cuts to pack.

• gap (float) – the duration of silence inserted between concatenated cuts.

• max_duration (Optional[float]) – the maximum duration for the concatenated cuts
(by default set to the duration of the first cut).

:return a list of packed cuts.

Return type List[Union[Cut, MixedCut, PaddingCut]]

class lhotse.dataset.speech_recognition.K2SpeechRecognitionDataset(cuts)
The PyTorch Dataset for the speech recognition task using K2 library. Each item in this dataset is a dict of:

{
'features': (T x F) tensor,
'supervisions': List[Dict] -> [

{
'sequence_idx': int
'text': string,
'start_frame': int,
'num_frames': int

} (multiplied N times, for each of the N supervisions present in the Cut)
]

}

The ‘sequence_idx’ field is the index of the Cut used to create the example in the Dataset. It is mapped to the
batch index later in the DataLoader.

__init__(cuts)
Initialize self. See help(type(self)) for accurate signature.

class lhotse.dataset.speech_recognition.K2DataLoader(*args, **kwds)
A PyTorch DataLoader that has a custom collate_fn that complements the K2SpeechRecognitionDataset.

The ‘features’ tensor is collated in a standard way to return a tensor of shape (B, T, F).

The ‘supervisions’ dict contains the same fields as in K2SpeechRecognitionDataset, except that each
sub-field (like ‘start_frame’) is a 1D PyTorch tensor with shape (B,). The ‘text’ sub-field is an exception - it’s a
list of strings with length equal to batch size.

The ‘sequence_idx’ sub-field in ‘supervisions’, which originally points to index of the example in the Dataset,
is remapped to the index of the corresponding features matrix in the collated ‘features’. Multiple supervisions
coming from the same cut will share the same ‘sequence_idx’.

For an example, see test/dataset/test_speech_recognition_dataset.
py::test_k2_dataloader().

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

dataset

batch_size

num_workers

24 Chapter 6. PyTorch Datasets

lhotse, Release 0.1

pin_memory

drop_last

timeout

sampler

prefetch_factor

lhotse.dataset.speech_recognition.multi_supervision_collate_fn(batch)
Custom collate_fn for K2SpeechRecognitionDataset.

It merges the items provided by K2SpeechRecognitionDataset into the following structure:

{
'features': float tensor of shape (B, T, F)
'supervisions': [

{
'sequence_idx': Tensor[int] of shape (S,)
'text': List[str] of len S
'start_frame': Tensor[int] of shape (S,)
'num_frames': Tensor[int] of shape (S,)

}
]

}

Dimension symbols legend: * B - batch size (number of Cuts), * S - number of supervision segments (greater
or equal to B, as each Cut may have multiple supervisions), * T - number of frames of the longest Cut * F -
number of features

Return type Dict

lhotse.dataset.speech_synthesis
alias of lhotse.dataset.speech_synthesis

class lhotse.dataset.source_separation.DynamicallyMixedSourceSeparationDataset(sources_set,
mix-
tures_set,
non-
sources_set=None)

A PyTorch Dataset for the source separation task. It’s created from a number of CutSets:

• sources_set: provides the audio cuts for the sources that (the targets of source separation),

• mixtures_set: provides the audio cuts for the signal mix (the input of source separation),

• nonsources_set: (optional) provides the audio cuts for other signals that are in the mix, but are not
the targets of source separation. Useful for adding noise.

When queried for data samples, it returns a dict of:

{
'sources': (N x T x F) tensor,
'mixture': (T x F) tensor,
'real_mask': (N x T x F) tensor,
'binary_mask': (T x F) tensor

}

This Dataset performs on-the-fly feature-domain mixing of the sources. It expects the mixtures_set to contain
MixedCuts, so that it knows which Cuts should be mixed together.

25

lhotse, Release 0.1

__init__(sources_set, mixtures_set, nonsources_set=None)
Initialize self. See help(type(self)) for accurate signature.

class lhotse.dataset.source_separation.PreMixedSourceSeparationDataset(sources_set,
mix-
tures_set)

A PyTorch Dataset for the source separation task. It’s created from two CutSets - one provides the audio cuts
for the sources, and the other one the audio cuts for the signal mix. When queried for data samples, it returns a
dict of:

{
'sources': (N x T x F) tensor,
'mixture': (T x F) tensor,
'real_mask': (N x T x F) tensor,
'binary_mask': (T x F) tensor

}

It expects both CutSets to return regular Cuts, meaning that the signals were mixed in the time domain. In
contrast to DynamicallyMixedSourceSeparationDataset, no on-the-fly feature-domain-mixing is performed.

__init__(sources_set, mixtures_set)
Initialize self. See help(type(self)) for accurate signature.

class lhotse.dataset.vad.VadDataset(cuts)
The PyTorch Dataset for the voice activity detection task. Each item in this dataset is a dict of:

{
'features': (T x F) tensor
'is_voice': (T x 1) tensor

}

__init__(cuts)
Initialize self. See help(type(self)) for accurate signature.

26 Chapter 6. PyTorch Datasets

CHAPTER

SEVEN

KALDI INTEROPERABILITY

We support importing Kaldi data directories that contain at least the wav.scp file, required to create the
RecordingSet. Other files, such as segments, utt2spk, etc. are used to create the SupervisionSet.

We currently do not support the following (but may start doing so in the future):

• Importing Kaldi’s extracted features (feats.scp is ignored)

• Exporting Lhotse manifests as Kaldi data directories.

7.1 Python

Python methods related to Kaldi support:

lhotse.kaldi.load_kaldi_data_dir(path, sampling_rate)
Load a Kaldi data directory and convert it to a Lhotse RecordingSet and SupervisionSet manifests. For this to
work, at least the wav.scp file must exist. SupervisionSet is created only when a segments file exists. All the
other files (text, utt2spk, etc.) are optional, and some of them might not be handled yet. In particular, feats.scp
files are ignored.

Return type Tuple[RecordingSet, Optional[SupervisionSet]]

lhotse.kaldi.load_kaldi_text_mapping(path, must_exist=False)
Load Kaldi files such as utt2spk, spk2gender, text, etc. as a dict.

Return type Dict[str, Optional[str]]

7.2 CLI

Converting Kaldi data directory called data/train, with 16kHz sampling rate recordings, to a directory with Lhotse
manifests called train_manifests:

lhotse convert-kaldi data/train 16000 train_manifests

27

lhotse, Release 0.1

28 Chapter 7. Kaldi Interoperability

CHAPTER

EIGHT

COMMAND-LINE INTERFACE

8.1 lhotse obtain

Command group for download and extract data.

lhotse obtain [OPTIONS] COMMAND [ARGS]...

8.1.1 heroico

heroico download.

lhotse obtain heroico [OPTIONS] TARGET_DIR

Arguments

TARGET_DIR
Required argument

8.1.2 librimix

Mini LibriMix download.

lhotse obtain librimix [OPTIONS] TARGET_DIR

Arguments

TARGET_DIR
Required argument

29

lhotse, Release 0.1

8.1.3 mini-librispeech

Mini Librispeech download.

lhotse obtain mini-librispeech [OPTIONS] TARGET_DIR

Arguments

TARGET_DIR
Required argument

8.1.4 tedlium

TED-LIUM v3 download (approx. 11GB).

lhotse obtain tedlium [OPTIONS] TARGET_DIR

Arguments

TARGET_DIR
Required argument

8.2 lhotse prepare

Command group with data preparation recipes.

lhotse prepare [OPTIONS] COMMAND [ARGS]...

8.2.1 broadcast-news

English Broadcast News 1997 data preparation. It will output three manifests: for recordings, topic sections, and
speech segments. It supports the following LDC distributions:

* 1997 English Broadcast News Train (HUB4)
Speech LDC98S71
Transcripts LDC98T28

This data is not available for free - your institution needs to have an LDC subscription.

lhotse prepare broadcast-news [OPTIONS] AUDIO_DIR TRANSCRIPT_DIR OUTPUT_DIR

30 Chapter 8. Command-line interface

lhotse, Release 0.1

Arguments

AUDIO_DIR
Required argument

TRANSCRIPT_DIR
Required argument

OUTPUT_DIR
Required argument

8.2.2 heroico

heroico Answers ASR data preparation.

lhotse prepare heroico [OPTIONS] SPEECH_DIR TRANSCRIPT_DIR OUTPUT_DIR

Arguments

SPEECH_DIR
Required argument

TRANSCRIPT_DIR
Required argument

OUTPUT_DIR
Required argument

8.2.3 librimix

LibrMix source separation data preparation.

lhotse prepare librimix [OPTIONS] LIBRIMIX_CSV OUTPUT_DIR

Options

--sampling-rate <sampling_rate>
Sampling rate to set in the RecordingSet manifest.

--min-segment-seconds <min_segment_seconds>
Remove segments shorter than MIN_SEGMENT_SECONDS.

--with-precomputed-mixtures, --no-precomputed-mixtures
Optionally create an RecordingSet manifest including the precomputed LibriMix mixtures.

8.2. lhotse prepare 31

lhotse, Release 0.1

Arguments

LIBRIMIX_CSV
Required argument

OUTPUT_DIR
Required argument

8.2.4 mini-librispeech

Mini Librispeech ASR data preparation.

lhotse prepare mini-librispeech [OPTIONS] CORPUS_DIR OUTPUT_DIR

Arguments

CORPUS_DIR
Required argument

OUTPUT_DIR
Required argument

8.2.5 switchboard

The Switchboard corpus preparation.

This is conversational telephone speech collected as 2-channel, 8kHz-sampled
data. We are using just the Switchboard-1 Phase 1 training data.
The catalog number LDC97S62 (Switchboard-1 Release 2) corresponds, we believe,
to what we have. We also use the Mississippi State transcriptions, which
we download separately from
http://www.isip.piconepress.com/projects/switchboard/releases/switchboard_word_alignments.tar.gz

This data is not available for free - your institution needs to have an LDC subscription.

lhotse prepare switchboard [OPTIONS] AUDIO_DIR OUTPUT_DIR

Options

--transcript-dir <transcript_dir>

--sentiment-dir <sentiment_dir>
Optional path to LDC2020T14 package with sentiment annotations for SWBD.

--omit-silence, --retain-silence
Should the [silence] segments be kept.

32 Chapter 8. Command-line interface

http://www.isip.piconepress.com/projects/switchboard/releases/switchboard_word_alignments.tar.gz

lhotse, Release 0.1

Arguments

AUDIO_DIR
Required argument

OUTPUT_DIR
Required argument

8.2.6 tedlium

TED-LIUM v3 recording and supervision manifest preparation.

lhotse prepare tedlium [OPTIONS] TEDLIUM_DIR OUTPUT_DIR

Arguments

TEDLIUM_DIR
Required argument

OUTPUT_DIR
Required argument

8.3 lhotse cut

Group of commands used to create CutSets.

lhotse cut [OPTIONS] COMMAND [ARGS]...

8.3.1 append

Create a new CutSet by appending the cuts in CUT_MANIFESTS. CUT_MANIFESTS are iterated position-wise (the
cuts on i’th position in each manfiest are appended to each other). The cuts are appended in the order in which they
appear in the input argument list. If CUT_MANIFESTS have different lengths, the script stops once the shortest
CutSet is depleted.

lhotse cut append [OPTIONS] [CUT_MANIFESTS]... OUTPUT_CUT_MANIFEST

Arguments

CUT_MANIFESTS
Optional argument(s)

OUTPUT_CUT_MANIFEST
Required argument

8.3. lhotse cut 33

lhotse, Release 0.1

8.3.2 mix-by-recording-id

Create a CutSet stored in OUTPUT_CUT_MANIFEST by matching the Cuts from CUT_MANIFESTS by their
recording IDs and mixing them together.

lhotse cut mix-by-recording-id [OPTIONS] [CUT_MANIFESTS]...
OUTPUT_CUT_MANIFEST

Arguments

CUT_MANIFESTS
Optional argument(s)

OUTPUT_CUT_MANIFEST
Required argument

8.3.3 mix-sequential

Create a CutSet stored in OUTPUT_CUT_MANIFEST by iterating jointly over CUT_MANIFESTS and mixing the
Cuts on the same positions. E.g. the first output cut is created from the first cuts in each input manifest. The mix
is performed by summing the features from all Cuts. If the CUT_MANIFESTS have different number of Cuts, the
mixing ends when the shorter manifest is depleted.

lhotse cut mix-sequential [OPTIONS] [CUT_MANIFESTS]... OUTPUT_CUT_MANIFEST

Arguments

CUT_MANIFESTS
Optional argument(s)

OUTPUT_CUT_MANIFEST
Required argument

8.3.4 pad

Create a new CutSet by padding the cuts in CUT_MANIFEST. The cuts will be right-padded, i.e. the padding is placed
after the signal ends.

lhotse cut pad [OPTIONS] CUT_MANIFEST OUTPUT_CUT_MANIFEST

Options

-d, --duration <duration>
Desired duration of cuts after padding. Cuts longer than this won’t be affected. By default, pad to the longest
cut duration found in CUT_MANIFEST.

34 Chapter 8. Command-line interface

lhotse, Release 0.1

Arguments

CUT_MANIFEST
Required argument

OUTPUT_CUT_MANIFEST
Required argument

8.3.5 random-mixed

Create a CutSet stored in OUTPUT_CUT_MANIFEST that contains supervision regions from SUPERVI-
SION_MANIFEST and features supplied by FEATURE_MANIFEST. It first creates a trivial CutSet, splits it into
two equal, randomized parts and mixes their features. The parameters of the mix are controlled via SNR_RANGE and
OFFSET_RANGE.

lhotse cut random-mixed [OPTIONS] SUPERVISION_MANIFEST FEATURE_MANIFEST
OUTPUT_CUT_MANIFEST

Options

-s, --snr-range <snr_range>
Range of SNR values (in dB) that will be uniformly sampled in order to mix the signals.

-o, --offset-range <offset_range>
Range of relative offset values (0 - 1), which will offset the “right” signal by this many times the duration of the
“left” signal. It is uniformly sampled for each mix operation.

Arguments

SUPERVISION_MANIFEST
Required argument

FEATURE_MANIFEST
Required argument

OUTPUT_CUT_MANIFEST
Required argument

8.3.6 simple

Create a CutSet stored in OUTPUT_CUT_MANIFEST. Depending on the provided options, it may contain any combi-
nation of recording, feature and supervision manifests. Either RECORDING_MANIFEST or FEATURE_MANIFEST
has to be provided. When SUPERVISION_MANIFEST is provided, the cuts time span will correspond to that of the
supervision segments. Otherwise, that time span corresponds to the one found in features, if available, otherwise
recordings.

lhotse cut simple [OPTIONS] OUTPUT_CUT_MANIFEST

8.3. lhotse cut 35

lhotse, Release 0.1

Options

-r, --recording-manifest <recording_manifest>
Optional recording manifest - will be used to attach the recordings to the cuts.

-f, --feature-manifest <feature_manifest>
Optional feature manifest - will be used to attach the features to the cuts.

-s, --supervision_manifest <supervision_manifest>
Optional supervision manifest - will be used to attach the supervisions to the cuts.

Arguments

OUTPUT_CUT_MANIFEST
Required argument

8.3.7 truncate

Truncate the cuts in the CUT_MANIFEST and write them to OUTPUT_CUT_MANIFEST. Cuts shorter than
MAX_DURATION will not be modified.

lhotse cut truncate [OPTIONS] CUT_MANIFEST OUTPUT_CUT_MANIFEST

Options

--preserve-id
Should the cuts preserve IDs (by default, they will get new, random IDs)

-d, --max-duration <max_duration>
The maximum duration in seconds of a cut in the resulting manifest. [required]

-o, --offset-type <offset_type>
Where should the truncated cut start: “start” - at the start of the original cut, “end” - MAX_DURATION before
the end of the original cut, “random” - randomly choose somewhere between “start” and “end” options.

Options start|end|random

--keep-overflowing-supervisions, --discard-overflowing-supervisions
When a cut is truncated in the middle of a supervision segment, should the supervision be kept.

Arguments

CUT_MANIFEST
Required argument

OUTPUT_CUT_MANIFEST
Required argument

36 Chapter 8. Command-line interface

lhotse, Release 0.1

8.3.8 windowed

Create a CutSet stored in OUTPUT_CUT_MANIFEST from feature regions in FEATURE_MANIFEST. The feature
matrices are traversed in windows with CUT_SHIFT increments, creating cuts of constant CUT_DURATION.

lhotse cut windowed [OPTIONS] FEATURE_MANIFEST OUTPUT_CUT_MANIFEST

Options

-d, --cut-duration <cut_duration>
How long should the cuts be in seconds.

-s, --cut-shift <cut_shift>
How much to shift the cutting window in seconds (by default the shift is equal to CUT_DURATION).

--keep-shorter-windows, --discard-shorter-windows
When true, the last window will be used to create a Cut even if its duration is shorter than CUT_DURATION.

Arguments

FEATURE_MANIFEST
Required argument

OUTPUT_CUT_MANIFEST
Required argument

8.4 lhotse manifest

Generic commands working with all or most manifest types.

lhotse manifest [OPTIONS] COMMAND [ARGS]...

8.4.1 combine

Load MANIFESTS, combine them into a single one, and write it to OUTPUT_MANIFEST.

lhotse manifest combine [OPTIONS] [MANIFESTS]... OUTPUT_MANIFEST

Arguments

MANIFESTS
Optional argument(s)

OUTPUT_MANIFEST
Required argument

8.4. lhotse manifest 37

lhotse, Release 0.1

8.4.2 filter

Filter a MANIFEST according to the rule specified in PREDICATE, and save the result to OUTPUT_MANIFEST. It
is intended to work generically with most manifest types - it supports RecordingSet, SupervisionSet and CutSet.

The PREDICATE specifies which attribute is used for item selection. Some examples:
lhotse manifest filter ‘duration>4.5’ supervision.json output.json
lhotse manifest filter ‘num_frames<600’ cuts.json output.json
lhotse manifest filter ‘start=0’ cuts.json output.json
lhotse manifest filter ‘channel!=0’ audio.json output.json

It currently only supports comparison of numerical manifest item attributes, such as: start, duration, end, channel,
num_frames, num_features, etc.

lhotse manifest filter [OPTIONS] PREDICATE MANIFEST OUTPUT_MANIFEST

Arguments

PREDICATE
Required argument

MANIFEST
Required argument

OUTPUT_MANIFEST
Required argument

8.4.3 split

Load MANIFEST, split it into NUM_SPLITS equal parts and save as separate manifests in OUTPUT_DIR.

lhotse manifest split [OPTIONS] NUM_SPLITS MANIFEST OUTPUT_DIR

Options

--randomize
Optionally randomize the sequence before splitting.

Arguments

NUM_SPLITS
Required argument

MANIFEST
Required argument

OUTPUT_DIR
Required argument

38 Chapter 8. Command-line interface

lhotse, Release 0.1

8.5 lhotse feat

Feature extraction related commands.

lhotse feat [OPTIONS] COMMAND [ARGS]...

8.5.1 extract

Extract features for recordings in a given AUDIO_MANIFEST. The features are stored in OUTPUT_DIR, with one
file per recording (or segment).

lhotse feat extract [OPTIONS] RECORDING_MANIFEST OUTPUT_DIR

Options

-a, --augmentation <augmentation>
Optional time-domain data augmentation effect chain to apply.

Options pitch|speed|reverb|pitch_reverb_tdrop

-f, --feature-manifest <feature_manifest>
Optional manifest specifying feature extractor configuration.

--storage-type <storage_type>
Select a storage backend for the feature matrices.

Options lilcom_files|lilcom_hdf5|numpy_files|numpy_hdf5

-t, --lilcom-tick-power <lilcom_tick_power>
Determines the compression accuracy; the input will be compressed to integer multiples of 2^tick_power

-r, --root-dir <root_dir>
Root directory - all paths in the manifest will use this as prefix.

-j, --num-jobs <num_jobs>
Number of parallel processes.

Arguments

RECORDING_MANIFEST
Required argument

OUTPUT_DIR
Required argument

8.5. lhotse feat 39

lhotse, Release 0.1

8.5.2 write-default-config

Save a default feature extraction config to OUTPUT_CONFIG.

lhotse feat write-default-config [OPTIONS] OUTPUT_CONFIG

Options

-f, --feature-type <feature_type>
Which feature extractor type to use.

Options fbank|mfcc|spectrogram

Arguments

OUTPUT_CONFIG
Required argument

8.6 lhotse convert-kaldi

Convert a Kaldi data dir DATA_DIR into a directory MANIFEST_DIR of lhotse manifests. Ignores feats.scp. The
SAMPLING_RATE has to be explicitly specified as it is not available to read from DATA_DIR.

lhotse convert-kaldi [OPTIONS] DATA_DIR SAMPLING_RATE MANIFEST_DIR

Arguments

DATA_DIR
Required argument

SAMPLING_RATE
Required argument

MANIFEST_DIR
Required argument

40 Chapter 8. Command-line interface

CHAPTER

NINE

API REFERENCE

This page contains a comprehensive list of all classes and functions within lhotse.

9.1 Datasets

PyTorch Dataset wrappers for common tasks.

9.1.1 Speech Recognition

class lhotse.dataset.speech_recognition.SpeechRecognitionDataset(cuts)
The PyTorch Dataset for the speech recognition task. Each item in this dataset is a dict of:

{
'features': (T x F) tensor,
'text': string,
'supervisions_mask': (T) tensor

}

The supervisions_mask field is a mask that specifies which frames are covered by a supervision by as-
signing a value of 1 (in this case: segments with transcribed speech contents), and which are not by asigning a
value of 0 (in this case: padding, contextual noise, or in general the acoustic context without transcription).

In the future, will be extended by graph supervisions.

__init__(cuts)
Initialize self. See help(type(self)) for accurate signature.

class lhotse.dataset.speech_recognition.K2SpeechRecognitionIterableDataset(cuts,
max_frames=26000,
max_cuts=None,
shuf-
fle=False,
con-
cat_cuts=True,
con-
cat_cuts_gap=1.0,
con-
cat_cuts_duration_factor=2)

The PyTorch Dataset for the speech recognition task using K2 library.

41

lhotse, Release 0.1

This dataset internally batches and collates the Cuts and should be used with PyTorch DataLoader with argument
batch_size=None to work properly. The batch size is determined automatically to satisfy the constraints of
max_frames and max_cuts.

This dataset will automatically partition itself when used with a multiprocessing DataLoader (i.e. the same cut
will not appear twice in the same epoch).

By default, we “pack” the batches to minimize the amount of padding - we achieve that by concatenating the
cuts’ feature matrices with a small amount of silence (padding) in between.

Each item in this dataset is a dict of:

{
'features': float tensor of shape (B, T, F)
'supervisions': [

{
'cut_id': List[str] of len S
'sequence_idx': Tensor[int] of shape (S,)
'text': List[str] of len S
'start_frame': Tensor[int] of shape (S,)
'num_frames': Tensor[int] of shape (S,)

}
]

}

Dimension symbols legend: * B - batch size (number of Cuts) * S - number of supervision segments (greater or
equal to B, as each Cut may have multiple supervisions) * T - number of frames of the longest Cut * F - number
of features

The ‘sequence_idx’ field is the index of the Cut used to create the example in the Dataset.

__init__(cuts, max_frames=26000, max_cuts=None, shuffle=False, concat_cuts=True, con-
cat_cuts_gap=1.0, concat_cuts_duration_factor=2)

K2 ASR IterableDataset constructor.

Parameters

• cuts (CutSet) – the CutSet to sample data from.

• max_frames (int) – The maximum number of feature frames that we’re going to put
in a single batch. The padding frames do not contribute to that limit, since we pack the
batch by default to minimze the amount of padding.

• max_cuts (Optional[int]) – The maximum number of cuts sampled to form a mini-
batch. By default, this constraint is off.

• shuffle (bool) – When True, the cuts will be shuffled at the start of iteration. Con-
venient when mini-batch loop is inside an outer epoch-level loop, e.g.: for epoch in
range(10): for batch in dataset: . . . as every epoch will see a different cuts order.

• concat_cuts (bool) – When True, we will concatenate the cuts to minimize the total
amount of padding; e.g. instead of creating a batch with 40 examples, we will merge some
of the examples together adding some silence between them to avoid a large number of
padding frames that waste the computation. Enabled by default.

• concat_cuts_gap (float) – The duration of silence in seconds that is inserted be-
tween the cuts; it’s goal is to let the model “know” that there are separate utterances in a
single example.

• concat_cuts_duration_factor (float) – Determines the maximum duration of
the concatenated cuts; by default it’s twice the duration of the longest cut in the batch.

42 Chapter 9. API Reference

lhotse, Release 0.1

lhotse.dataset.speech_recognition.concat_cuts(cuts, gap=1.0, max_duration=None)
We’re going to concatenate the cuts to minimize the amount of total padding frames used. This is actually
solving a knapsack problem. In this initial implementation we’re using a greedy approach: going from the back
(i.e. the shortest cuts) we’ll try to concat them to the longest cut that still has some “space” at the end.

Parameters

• cuts (List[Union[ForwardRef, ForwardRef, ForwardRef]]) – a list of cuts to
pack.

• gap (float) – the duration of silence inserted between concatenated cuts.

• max_duration (Optional[float]) – the maximum duration for the concatenated cuts
(by default set to the duration of the first cut).

:return a list of packed cuts.

Return type List[Union[ForwardRef, ForwardRef, ForwardRef]]

class lhotse.dataset.speech_recognition.K2SpeechRecognitionDataset(cuts)
The PyTorch Dataset for the speech recognition task using K2 library. Each item in this dataset is a dict of:

{
'features': (T x F) tensor,
'supervisions': List[Dict] -> [

{
'sequence_idx': int
'text': string,
'start_frame': int,
'num_frames': int

} (multiplied N times, for each of the N supervisions present in the Cut)
]

}

The ‘sequence_idx’ field is the index of the Cut used to create the example in the Dataset. It is mapped to the
batch index later in the DataLoader.

__init__(cuts)
Initialize self. See help(type(self)) for accurate signature.

class lhotse.dataset.speech_recognition.K2DataLoader(*args, **kwds)
A PyTorch DataLoader that has a custom collate_fn that complements the K2SpeechRecognitionDataset.

The ‘features’ tensor is collated in a standard way to return a tensor of shape (B, T, F).

The ‘supervisions’ dict contains the same fields as in K2SpeechRecognitionDataset, except that each
sub-field (like ‘start_frame’) is a 1D PyTorch tensor with shape (B,). The ‘text’ sub-field is an exception - it’s a
list of strings with length equal to batch size.

The ‘sequence_idx’ sub-field in ‘supervisions’, which originally points to index of the example in the Dataset,
is remapped to the index of the corresponding features matrix in the collated ‘features’. Multiple supervisions
coming from the same cut will share the same ‘sequence_idx’.

For an example, see test/dataset/test_speech_recognition_dataset.
py::test_k2_dataloader().

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

dataset

batch_size

num_workers

9.1. Datasets 43

lhotse, Release 0.1

pin_memory

drop_last

timeout

sampler

prefetch_factor

lhotse.dataset.speech_recognition.multi_supervision_collate_fn(batch)
Custom collate_fn for K2SpeechRecognitionDataset.

It merges the items provided by K2SpeechRecognitionDataset into the following structure:

{
'features': float tensor of shape (B, T, F)
'supervisions': [

{
'sequence_idx': Tensor[int] of shape (S,)
'text': List[str] of len S
'start_frame': Tensor[int] of shape (S,)
'num_frames': Tensor[int] of shape (S,)

}
]

}

Dimension symbols legend: * B - batch size (number of Cuts), * S - number of supervision segments (greater
or equal to B, as each Cut may have multiple supervisions), * T - number of frames of the longest Cut * F -
number of features

Return type Dict

9.1.2 Source Separation

class lhotse.dataset.source_separation.SourceSeparationDataset(sources_set,
mixtures_set)

An abstract base class, implementing PyTorch Dataset for the source separation task. It’s created from two
CutSets - one provides the audio cuts for the sources, and the other one the audio cuts for the signal mix. When
queried for data samples, it returns a dict of:

{
'sources': (N x T x F) tensor,
'mixture': (T x F) tensor,
'real_mask': (N x T x F) tensor,
'binary_mask': (T x F) tensor

}

__init__(sources_set, mixtures_set)
Initialize self. See help(type(self)) for accurate signature.

validate()

class lhotse.dataset.source_separation.DynamicallyMixedSourceSeparationDataset(sources_set,
mix-
tures_set,
non-
sources_set=None)

A PyTorch Dataset for the source separation task. It’s created from a number of CutSets:

44 Chapter 9. API Reference

lhotse, Release 0.1

• sources_set: provides the audio cuts for the sources that (the targets of source separation),

• mixtures_set: provides the audio cuts for the signal mix (the input of source separation),

• nonsources_set: (optional) provides the audio cuts for other signals that are in the mix, but are not
the targets of source separation. Useful for adding noise.

When queried for data samples, it returns a dict of:

{
'sources': (N x T x F) tensor,
'mixture': (T x F) tensor,
'real_mask': (N x T x F) tensor,
'binary_mask': (T x F) tensor

}

This Dataset performs on-the-fly feature-domain mixing of the sources. It expects the mixtures_set to contain
MixedCuts, so that it knows which Cuts should be mixed together.

__init__(sources_set, mixtures_set, nonsources_set=None)
Initialize self. See help(type(self)) for accurate signature.

class lhotse.dataset.source_separation.PreMixedSourceSeparationDataset(sources_set,
mix-
tures_set)

A PyTorch Dataset for the source separation task. It’s created from two CutSets - one provides the audio cuts
for the sources, and the other one the audio cuts for the signal mix. When queried for data samples, it returns a
dict of:

{
'sources': (N x T x F) tensor,
'mixture': (T x F) tensor,
'real_mask': (N x T x F) tensor,
'binary_mask': (T x F) tensor

}

It expects both CutSets to return regular Cuts, meaning that the signals were mixed in the time domain. In
contrast to DynamicallyMixedSourceSeparationDataset, no on-the-fly feature-domain-mixing is performed.

__init__(sources_set, mixtures_set)
Initialize self. See help(type(self)) for accurate signature.

9.1.3 Unsupervised

class lhotse.dataset.unsupervised.UnsupervisedDataset(cuts)
Dataset that contains no supervision - it only provides the features extracted from recordings. The returned
features are a torch.Tensor of shape (T x F), where T is the number of frames, and F is the feature
dimension.

__init__(cuts)
Initialize self. See help(type(self)) for accurate signature.

class lhotse.dataset.unsupervised.UnsupervisedWaveformDataset(cuts)
A variant of UnsupervisedDataset that provides waveform samples instead of features. The output is a tensor of
shape (C, T), with C being the number of channels and T the number of audio samples. In this implemenation,
there will always be a single channel.

9.1. Datasets 45

lhotse, Release 0.1

class lhotse.dataset.unsupervised.DynamicUnsupervisedDataset(feature_extractor,
cuts, aug-
ment_fn=None)

An example dataset that shows how to use on-the-fly feature extraction in Lhotse. It accepts two ad-
ditional inputs - a FeatureExtractor and an optional WavAugmenter for time-domain data augmentation..
The output is approximately the same as that of the UnsupervisedDataset - there might be slight
differences for MixedCut``s, because this dataset mixes them in the time domain,
and ``UnsupervisedDataset does that in the feature domain. Cuts that are not mixed will yield identi-
cal results in both dataset classes.

__init__(feature_extractor, cuts, augment_fn=None)
Initialize self. See help(type(self)) for accurate signature.

9.1.4 Voice Activity Detection

class lhotse.dataset.vad.VadDataset(cuts)
The PyTorch Dataset for the voice activity detection task. Each item in this dataset is a dict of:

{
'features': (T x F) tensor
'is_voice': (T x 1) tensor

}

__init__(cuts)
Initialize self. See help(type(self)) for accurate signature.

9.1.5 Diarization (experimental)

class lhotse.dataset.diarization.DiarizationDataset(cuts, min_speaker_dim=None,
global_speaker_ids=False)

A PyTorch Dataset for the speaker diarization task. Our assumptions about speaker diarization are the following:

• we assume a single channel input (for now), which could be either a true mono signal or a beam-
forming result from a microphone array.

• we assume that the supervision used for model training is a speech activity matrix, with one row
dedicated to each speaker (either in the current cut or the whole dataset, depending on the set-
tings). The columns correspond to feature frames. Each row is effectively a Voice Activity
Detection supervision for a single speaker. This setup is somewhat inspired by the TS-VAD paper:
https://arxiv.org/abs/2005.07272

Each item in this dataset is a dict of:

{
'features': (T x F) tensor
'speaker_activity': (num_speaker x T) tensor

}

Constructor arguments:

Parameters

• cuts (CutSet) – a CutSet used to create the dataset object.

• min_speaker_dim (Optional[int]) – optional int, when specified it will enforce that
the matrix shape is at least that value (useful for datasets like CHiME 6 where the number
of speakers is always 4, but some cuts might have less speakers than that).

46 Chapter 9. API Reference

https://arxiv.org/abs/2005.07272

lhotse, Release 0.1

• global_speaker_ids (bool) – a bool, indicates whether the same speaker should al-
ways retain the same row index in the speaker activity matrix (useful for speaker-dependent
systems)

• root_dir – a prefix path to be attached to the feature files paths.

__init__(cuts, min_speaker_dim=None, global_speaker_ids=False)
Initialize self. See help(type(self)) for accurate signature.

9.2 Recording manifests

Data structures used for describing audio recordings in a dataset.

class lhotse.audio.AudioSource(type: str, channels: List[int], source: str)
AudioSource represents audio data that can be retrieved from somewhere. Supported sources of audio are
currently: - ‘file’ (formats supported by librosa, possibly multi-channel) - ‘command’ [unix pipe] (must be
WAVE, possibly multi-channel)

type: str

channels: List[int]

source: str

load_audio(offset_seconds=0.0, duration_seconds=None)
Load the AudioSource (both files and commands) with librosa, accounting for many audio formats and
multi-channel inputs. Returns numpy array with shapes: (n_samples) for single-channel, (n_channels,
n_samples) for multi-channel.

Return type ndarray

with_path_prefix(path)

Return type AudioSource

static from_dict(data)

Return type AudioSource

__init__(type, channels, source)
Initialize self. See help(type(self)) for accurate signature.

lhotse.audio.read_audio(path, offset, duration)

Return type Tuple[ndarray, int]

class lhotse.audio.Recording(id: str, sources: List[lhotse.audio.AudioSource], sampling_rate:
int, num_samples: int, duration: float)

Recording represents an AudioSource along with some metadata.

id: str

sources: List[AudioSource]

sampling_rate: int

num_samples: int

duration: Seconds

static from_sphere(sph_path, relative_path_depth=None)
Read a SPHERE file’s header and create the corresponding Recording.

Parameters

9.2. Recording manifests 47

lhotse, Release 0.1

• sph_path (Union[Path, str]) – Path to the sphere (.sph) file.

• relative_path_depth (Optional[int]) – optional int specifying how many last
parts of the file path should be retained in the AudioSource. By default writes the path
as is.

Return type Recording

Returns a new Recording instance pointing to the sphere file.

property num_channels

property channel_ids

load_audio(channels=None, offset_seconds=0.0, duration_seconds=None)

Return type ndarray

with_path_prefix(path)

Return type Recording

static from_dict(data)

Return type Recording

__init__(id, sources, sampling_rate, num_samples, duration)
Initialize self. See help(type(self)) for accurate signature.

class lhotse.audio.RecordingSet(*args, **kwds)
RecordingSet represents a dataset of recordings. It does not contain any annotation - just the information needed
to retrieve a recording (possibly multi-channel, from files or from shell commands and pipes) and some metadata
for each of them.

It also supports (de)serialization to/from YAML and takes care of mapping between rich Python classes and
YAML primitives during conversion.

recordings: Dict[str, Recording]

static from_recordings(recordings)

Return type RecordingSet

static from_dicts(data)

Return type RecordingSet

to_dicts()

Return type List[dict]

filter(predicate)
Return a new RecordingSet with the Recordings that satisfy the predicate.

Parameters predicate (Callable[[Recording], bool]) – a function that takes a
recording as an argument and returns bool.

Return type RecordingSet

Returns a filtered RecordingSet.

split(num_splits, randomize=False)
Split the RecordingSet into num_splits pieces of equal size.

Parameters

• num_splits (int) – Requested number of splits.

48 Chapter 9. API Reference

lhotse, Release 0.1

• randomize (bool) – Optionally randomize the recordings order first.

Return type List[RecordingSet]

Returns A list of RecordingSet pieces.

load_audio(recording_id, channels=None, offset_seconds=0.0, duration_seconds=None)

Return type ndarray

with_path_prefix(path)

Return type RecordingSet

num_channels(recording_id)

Return type int

sampling_rate(recording_id)

Return type int

num_samples(recording_id)

Return type int

duration(recording_id)

Return type float

__init__(recordings)
Initialize self. See help(type(self)) for accurate signature.

class lhotse.audio.AudioMixer(base_audio, sampling_rate)
Utility class to mix multiple waveforms into a single one. It should be instantiated separately for each mixing
session (i.e. each MixedCut will create a separate AudioMixer to mix its tracks). It is initialized with a
numpy array of audio samples (typically float32 in [-1, 1] range) that represents the “reference” signal for the
mix. Other signals can be mixed to it with different time offsets and SNRs using the add_to_mix method.
The time offset is relative to the start of the reference signal (only positive values are supported). The SNR is
relative to the energy of the signal used to initialize the AudioMixer.

__init__(base_audio, sampling_rate)

Parameters

• base_audio (ndarray) – A numpy array with the audio samples for the base signal
(all the other signals will be mixed to it).

• sampling_rate (int) – Sampling rate of the audio.

property unmixed_audio
Return a numpy ndarray with the shape (num_tracks, num_samples), where each track is zero padded and
scaled adequately to the offsets and SNR used in add_to_mix call.

Return type ndarray

property mixed_audio
Return a numpy ndarray with the shape (1, num_samples) - a mono mix of the tracks supplied with
add_to_mix calls.

Return type ndarray

add_to_mix(audio, snr=None, offset=0.0)
Add audio (only support mono-channel) of a new track into the mix. :type audio: ndarray :param audio:
An array of audio samples to be mixed in. :type snr: Optional[float] :param snr: Signal-to-noise
ratio, assuming audio represents noise (positive SNR - lower audio energy, negative SNR - higher audio

9.2. Recording manifests 49

lhotse, Release 0.1

energy) :type offset: float :param offset: How many seconds to shift audio in time. For mixing, the
signal will be padded before the start with low energy values. :return:

lhotse.audio.audio_energy(audio)

Return type float

9.3 Supervision manifests

Data structures used for describing supervisions in a dataset.

class lhotse.supervision.SupervisionSegment(id: str, recording_id: str, start: float, dura-
tion: float, channel: int = 0, text: Union[str,
NoneType] = None, language: Union[str,
NoneType] = None, speaker: Union[str,
NoneType] = None, gender: Union[str,
NoneType] = None, custom: Union[Dict[str,
Any], NoneType] = None)

id: str

recording_id: str

start: Seconds

duration: Seconds

channel: int = 0

text: Optional[str] = None

language: Optional[str] = None

speaker: Optional[str] = None

gender: Optional[str] = None

custom: Optional[Dict[str, Any]] = None

property end

Return type float

with_offset(offset)
Return an identical SupervisionSegment, but with the offset added to the start field.

Return type SupervisionSegment

trim(end)
Return an identical SupervisionSegment, but ensure that self.start is not negative (in which
case it’s set to 0) and self.end does not exceed the end parameter.

This method is useful for ensuring that the supervision does not exceed a cut’s bounds, in which case pass
cut.duration as the end argument, since supervision times are relative to the cut.

Return type SupervisionSegment

map(transform_fn)
Return a copy of the current segment, transformed with transform_fn.

Parameters transform_fn (Callable[[SupervisionSegment],
SupervisionSegment]) – a function that takes a segment as input, transforms it
and returns a new segment.

50 Chapter 9. API Reference

lhotse, Release 0.1

Return type SupervisionSegment

Returns a modified SupervisionSegment.

transform_text(transform_fn)
Return a copy of the current segment with transformed text field. Useful for text normalization, phonetic
transcription, etc.

Parameters transform_fn (Callable[[str], str]) – a function that accepts a string and
returns a string.

Return type SupervisionSegment

Returns a SupervisionSegment with adjusted text.

static from_dict(data)

Return type SupervisionSegment

__init__(id, recording_id, start, duration, channel=0, text=None, language=None, speaker=None,
gender=None, custom=None)

Initialize self. See help(type(self)) for accurate signature.

class lhotse.supervision.SupervisionSet(*args, **kwds)
SupervisionSet represents a collection of segments containing some supervision information. The only required
fields are the ID of the segment, ID of the corresponding recording, and the start and duration of the segment in
seconds. All other fields, such as text, language or speaker, are deliberately optional to support a wide range of
tasks, as well as adding more supervision types in the future, while retaining backwards compatibility.

segments: Dict[str, SupervisionSegment]

static from_segments(segments)

Return type SupervisionSet

static from_dicts(data)

Return type SupervisionSet

to_dicts()

Return type List[dict]

split(num_splits, randomize=False)
Split the SupervisionSet into num_splits pieces of equal size.

Parameters

• num_splits (int) – Requested number of splits.

• randomize (bool) – Optionally randomize the supervisions order first.

Return type List[SupervisionSet]

Returns A list of SupervisionSet pieces.

filter(predicate)
Return a new SupervisionSet with the SupervisionSegments that satisfy the predicate.

Parameters predicate (Callable[[SupervisionSegment], bool]) – a function that
takes a supervision as an argument and returns bool.

Return type SupervisionSet

Returns a filtered SupervisionSet.

map(transform_fn)
Map a transform_fn to the SupervisionSegments and return a new SupervisionSet.

9.3. Supervision manifests 51

lhotse, Release 0.1

Parameters transform_fn (Callable[[SupervisionSegment],
SupervisionSegment]) – a function that modifies a supervision as an argument.

Return type SupervisionSet

Returns a new SupervisionSet with modified segments.

transform_text(transform_fn)
Return a copy of the current SupervisionSet with the segments having a transformed text field.
Useful for text normalization, phonetic transcription, etc.

Parameters transform_fn (Callable[[str], str]) – a function that accepts a string and
returns a string.

Return type SupervisionSet

Returns a SupervisionSet with adjusted text.

find(recording_id, channel=None, start_after=0, end_before=None, adjust_offset=False)
Return an iterable of segments that match the provided recording_id.

Parameters

• recording_id (str) – Desired recording ID.

• channel (Optional[int]) – When specified, return supervisions in that channel -
otherwise, in all channels.

• start_after (float) – When specified, return segments that start after the given
value.

• end_before (Optional[float]) – When specified, return segments that end before
the given value.

• adjust_offset (bool) – When true, return segments as if the recordings had started
at start_after. This is useful for creating Cuts. Fom a user perspective, when dealing
with a Cut, it is no longer helpful to know when the supervisions starts in a recording -
instead, it’s useful to know when the supervision starts relative to the start of the Cut. In
the anticipated use-case, start_after and end_before would be the beginning and
end of a cut; this option converts the times to be relative to the start of the cut.

Return type Iterable[SupervisionSegment]

Returns An iterator over supervision segments satisfying all criteria.

__init__(segments, _segments_by_recording_id=None)
Initialize self. See help(type(self)) for accurate signature.

9.4 Feature extraction and manifests

Data structures and tools used for feature extraction and description.

52 Chapter 9. API Reference

lhotse, Release 0.1

9.4.1 Features API - extractor and manifests

class lhotse.features.base.FeatureExtractor(config=None)
The base class for all feature extractors in Lhotse. It is initialized with a config object, specific to a particular
feature extraction method. The config is expected to be a dataclass so that it can be easily serialized.

All derived feature extractors must implement at least the following:

• a name class attribute (how are these features called, e.g. ‘mfcc’)

• a config_type class attribute that points to the configuration dataclass type

• the extract method,

• the frame_shift property.

Feature extractors that support feature-domain mixing should additionally specify two static methods:

• compute_energy, and

• mix.

By itself, the FeatureExtractor offers the following high-level methods that are not intended for overrid-
ing:

• extract_from_samples_and_store

• extract_from_recording_and_store

These methods run a larger feature extraction pipeline that involves data augmentation and disk storage.

name = None

config_type = None

__init__(config=None)
Initialize self. See help(type(self)) for accurate signature.

abstract extract(samples, sampling_rate)
Defines how to extract features using a numpy ndarray of audio samples and the sampling rate.

Return type ndarray

Returns a numpy ndarray representing the feature matrix.

abstract property frame_shift

Return type float

abstract feature_dim(sampling_rate)

Return type int

static mix(features_a, features_b, energy_scaling_factor_b)
Perform feature-domain mix of two singals, a and b, and return the mixed signal.

Parameters

• features_a (ndarray) – Left-hand side (reference) signal.

• features_b (ndarray) – Right-hand side (mixed-in) signal.

• energy_scaling_factor_b (float) – A scaling factor for features_b energy.
It is used to achieve a specific SNR. E.g. to mix with an SNR of 10dB when both
features_a and features_b energies are 100, the features_b signal energy
needs to be scaled by 0.1. Since different features (e.g. spectrogram, fbank, MFCC)
require different combination of transformations (e.g. exp, log, sqrt, pow) to allow mixing

9.4. Feature extraction and manifests 53

lhotse, Release 0.1

of two signals, the exact place where to apply energy_scaling_factor_b to the
signal is determined by the implementer.

Return type ndarray

Returns A mixed feature matrix.

static compute_energy(features)
Compute the total energy of a feature matrix. How the energy is computed depends on a particular type of
features. It is expected that when implemented, compute_energy will never return zero.

Parameters features (ndarray) – A feature matrix.

Return type float

Returns A positive float value of the signal energy.

extract_from_samples_and_store(samples, storage, sampling_rate, offset=0, aug-
ment_fn=None)

Extract the features from an array of audio samples in a full pipeline:

• optional audio augmentation;

• extract the features;

• save them to disk in a specified directory;

• return a Features object with a description of the extracted features.

Note, unlike in extract_from_recording_and_store, the returned Features object might not
be suitable to store in a FeatureSet, as it does not reference any particular Recording. Instead, this
method is useful when extracting features from cuts - especially MixedCut instances, which may be
created from multiple recordings and channels.

Parameters

• samples (ndarray) – a numpy ndarray with the audio samples.

• sampling_rate (int) – integer sampling rate of samples.

• storage (FeaturesWriter) – a FeaturesWriter object that will handle storing
the feature matrices.

• offset (float) – an offset in seconds for where to start reading the recording - when
used for Cut feature extraction, must be equal to Cut.start.

• augment_fn (Optional[Callable[[ndarray, int], ndarray]]) – an optional
WavAugmenter instance to modify the waveform before feature extraction.

Returns a Features manifest item for the extracted feature matrix (it is not written to disk).

extract_from_recording_and_store(recording, storage, offset=0, duration=None, chan-
nels=None, augment_fn=None)

Extract the features from a Recording in a full pipeline:

• load audio from disk;

• optionally, perform audio augmentation;

• extract the features;

• save them to disk in a specified directory;

• return a Features object with a description of the extracted features and the source data used.

Parameters

54 Chapter 9. API Reference

lhotse, Release 0.1

• recording (Recording) – a Recording that specifies what’s the input audio.

• storage (FeaturesWriter) – a FeaturesWriter object that will handle storing
the feature matrices.

• offset (float) – an optional offset in seconds for where to start reading the recording.

• duration (Optional[float]) – an optional duration specifying how much audio to
load from the recording.

• channels (Union[int, List[int], None]) – an optional int or list of ints, specifying
the channels; by default, all channels will be used.

• augment_fn (Optional[Callable[[ndarray, int], ndarray]]) – an optional
WavAugmenter instance to modify the waveform before feature extraction.

Returns a Features manifest item for the extracted feature matrix.

classmethod from_dict(data)

Return type FeatureExtractor

classmethod from_yaml(path)

Return type FeatureExtractor

to_yaml(path)

lhotse.features.base.get_extractor_type(name)
Return the feature extractor type corresponding to the given name.

Parameters name (str) – specifies which feature extractor should be used.

Return type Type

Returns A feature extractors type.

lhotse.features.base.create_default_feature_extractor(name)
Create a feature extractor object with a default configuration.

Parameters name (str) – specifies which feature extractor should be used.

Return type Optional[FeatureExtractor]

Returns A new feature extractor instance.

lhotse.features.base.register_extractor(cls)
This decorator is used to register feature extractor classes in Lhotse so they can be easily created just by knowing
their name.

An example of usage:

@register_extractor class MyFeatureExtractor: . . .

Parameters cls – A type (class) that is being registered.

Returns Registered type.

class lhotse.features.base.TorchaudioFeatureExtractor(config=None)
Common abstract base class for all torchaudio based feature extractors.

feature_fn = None

extract(samples, sampling_rate)
Defines how to extract features using a numpy ndarray of audio samples and the sampling rate.

Return type ndarray

9.4. Feature extraction and manifests 55

lhotse, Release 0.1

Returns a numpy ndarray representing the feature matrix.

property frame_shift

Return type float

class lhotse.features.base.Features(type: str, num_frames: int, num_features: int, sam-
pling_rate: int, start: float, duration: float, storage_type:
str, storage_path: str, storage_key: str, recording_id:
Optional[str] = None, channels: Optional[Union[int,
List[int]]] = None)

Represents features extracted for some particular time range in a given recording and channel. It contains
metadata about how it’s stored: storage_type describes “how to read it”, for now it supports numpy arrays
serialized with np.save, as well as arrays compressed with lilcom; storage_path is the path to the file on the local
filesystem.

type: str

num_frames: int

num_features: int

sampling_rate: int

start: Seconds

duration: Seconds

storage_type: str

storage_path: str

storage_key: str

recording_id: Optional[str] = None

channels: Optional[Union[int, List[int]]] = None

property end

Return type float

property frame_shift

Return type float

load(start=None, duration=None)

Return type ndarray

with_path_prefix(path)

Return type Features

static from_dict(data)

Return type Features

__init__(type, num_frames, num_features, sampling_rate, start, duration, storage_type, storage_path,
storage_key, recording_id=None, channels=None)

Initialize self. See help(type(self)) for accurate signature.

class lhotse.features.base.FeatureSet(*args, **kwds)
Represents a feature manifest, and allows to read features for given recordings within particular channels and
time ranges. It also keeps information about the feature extractor parameters used to obtain this set. When a
given recording/time-range/channel is unavailable, raises a KeyError.

features: List[Features]

56 Chapter 9. API Reference

lhotse, Release 0.1

static from_features(features)

Return type FeatureSet

static from_dicts(data)

Return type FeatureSet

to_dicts()

Return type List[dict]

with_path_prefix(path)

Return type FeatureSet

split(num_splits, randomize=False)
Split the FeatureSet into num_splits pieces of equal size.

Parameters

• num_splits (int) – Requested number of splits.

• randomize (bool) – Optionally randomize the features order first.

Return type List[FeatureSet]

Returns A list of FeatureSet pieces.

find(recording_id, channel_id=0, start=0.0, duration=None, leeway=0.05)
Find and return a Features object that best satisfies the search criteria. Raise a KeyError when no such
object is available.

Parameters

• recording_id (str) – str, requested recording ID.

• channel_id (int) – int, requested channel.

• start (float) – float, requested start time in seconds for the feature chunk.

• duration (Optional[float]) – optional float, requested duration in seconds for the
feature chunk. By default, return everything from the start.

• leeway (float) – float, controls how strictly we have to match the requested start and
duration criteria. It is necessary to keep a small positive value here (default 0.05s), as
there might be differneces between the duration of recording/supervision segment, and the
duration of features. The latter one is constrained to be a multiple of frame_shift, while
the former can be arbitrary.

Return type Features

Returns a Features object satisfying the search criteria.

load(recording_id, channel_id=0, start=0.0, duration=None)
Find a Features object that best satisfies the search criteria and load the features as a numpy ndarray. Raise
a KeyError when no such object is available.

Return type ndarray

__init__(features=<factory>, _features_by_recording_id=None)
Initialize self. See help(type(self)) for accurate signature.

class lhotse.features.base.FeatureSetBuilder(feature_extractor, storage, aug-
ment_fn=None)

An extended constructor for the FeatureSet. Think of it as a class wrapper for a feature extraction script. It

9.4. Feature extraction and manifests 57

lhotse, Release 0.1

consumes an iterable of Recordings, extracts the features specified by the FeatureExtractor config, and saves
stores them on the disk.

Eventually, we plan to extend it with the capability to extract only the features in specified regions of recordings
and to perform some time-domain data augmentation.

__init__(feature_extractor, storage, augment_fn=None)
Initialize self. See help(type(self)) for accurate signature.

process_and_store_recordings(recordings, output_manifest=None, num_jobs=1)

Return type FeatureSet

lhotse.features.base.store_feature_array(feats, storage)
Store feats array on disk, using lilcom compression by default.

Parameters

• feats (ndarray) – a numpy ndarray containing features.

• storage (FeaturesWriter) – a FeaturesWriter object to use for array storage.

Return type str

Returns a path to the file containing the stored array.

9.4.2 Torchaudio feature extractors

class lhotse.features.fbank.FbankConfig(dither: float = 0.0, window_type: str = 'povey',
frame_length: float = 0.025, frame_shift:
float = 0.01, remove_dc_offset: bool = True,
round_to_power_of_two: bool = True, en-
ergy_floor: float = 1e-10, min_duration: float
= 0.0, preemphasis_coefficient: float = 0.97,
raw_energy: bool = True, low_freq: float = 20.0,
high_freq: float = - 400.0, num_mel_bins: int =
40, use_energy: bool = False, vtln_low: float =
100.0, vtln_high: float = - 500.0, vtln_warp: float
= 1.0)

dither: float = 0.0

window_type: str = 'povey'

frame_length: float = 0.025

frame_shift: float = 0.01

remove_dc_offset: bool = True

round_to_power_of_two: bool = True

energy_floor: float = 1e-10

min_duration: float = 0.0

preemphasis_coefficient: float = 0.97

raw_energy: bool = True

low_freq: float = 20.0

high_freq: float = -400.0

58 Chapter 9. API Reference

lhotse, Release 0.1

num_mel_bins: int = 40

use_energy: bool = False

vtln_low: float = 100.0

vtln_high: float = -500.0

vtln_warp: float = 1.0

__init__(dither=0.0, window_type='povey', frame_length=0.025, frame_shift=0.01, re-
move_dc_offset=True, round_to_power_of_two=True, energy_floor=1e-10,
min_duration=0.0, preemphasis_coefficient=0.97, raw_energy=True, low_freq=20.0,
high_freq=- 400.0, num_mel_bins=40, use_energy=False, vtln_low=100.0, vtln_high=-
500.0, vtln_warp=1.0)

Initialize self. See help(type(self)) for accurate signature.

class lhotse.features.fbank.Fbank(config=None)
Log Mel energy filter bank feature extractor based on torchaudio.compliance.kaldi.fbank func-
tion.

name = 'fbank'

config_type
alias of FbankConfig

feature_dim(sampling_rate)

Return type int

static mix(features_a, features_b, energy_scaling_factor_b)
Perform feature-domain mix of two singals, a and b, and return the mixed signal.

Parameters

• features_a (ndarray) – Left-hand side (reference) signal.

• features_b (ndarray) – Right-hand side (mixed-in) signal.

• energy_scaling_factor_b (float) – A scaling factor for features_b energy.
It is used to achieve a specific SNR. E.g. to mix with an SNR of 10dB when both
features_a and features_b energies are 100, the features_b signal energy
needs to be scaled by 0.1. Since different features (e.g. spectrogram, fbank, MFCC)
require different combination of transformations (e.g. exp, log, sqrt, pow) to allow mixing
of two signals, the exact place where to apply energy_scaling_factor_b to the
signal is determined by the implementer.

Return type ndarray

Returns A mixed feature matrix.

static compute_energy(features)
Compute the total energy of a feature matrix. How the energy is computed depends on a particular type of
features. It is expected that when implemented, compute_energy will never return zero.

Parameters features (ndarray) – A feature matrix.

Return type float

Returns A positive float value of the signal energy.

9.4. Feature extraction and manifests 59

lhotse, Release 0.1

class lhotse.features.mfcc.MfccConfig(dither: float = 0.0, window_type: str = 'povey',
frame_length: float = 0.025, frame_shift:
float = 0.01, remove_dc_offset: bool = True,
round_to_power_of_two: bool = True, energy_floor:
float = 1e-10, min_duration: float = 0.0, preempha-
sis_coefficient: float = 0.97, raw_energy: bool =
True, low_freq: float = 20.0, high_freq: float = 0.0,
num_mel_bins: int = 23, use_energy: bool = False,
vtln_low: float = 100.0, vtln_high: float = - 500.0,
vtln_warp: float = 1.0, cepstral_lifter: float = 22.0,
num_ceps: int = 13)

dither: float = 0.0

window_type: str = 'povey'

frame_length: float = 0.025

frame_shift: float = 0.01

remove_dc_offset: bool = True

round_to_power_of_two: bool = True

energy_floor: float = 1e-10

min_duration: float = 0.0

preemphasis_coefficient: float = 0.97

raw_energy: bool = True

low_freq: float = 20.0

high_freq: float = 0.0

num_mel_bins: int = 23

use_energy: bool = False

vtln_low: float = 100.0

vtln_high: float = -500.0

vtln_warp: float = 1.0

cepstral_lifter: float = 22.0

num_ceps: int = 13

__init__(dither=0.0, window_type='povey', frame_length=0.025, frame_shift=0.01, re-
move_dc_offset=True, round_to_power_of_two=True, energy_floor=1e-10,
min_duration=0.0, preemphasis_coefficient=0.97, raw_energy=True, low_freq=20.0,
high_freq=0.0, num_mel_bins=23, use_energy=False, vtln_low=100.0, vtln_high=- 500.0,
vtln_warp=1.0, cepstral_lifter=22.0, num_ceps=13)

Initialize self. See help(type(self)) for accurate signature.

class lhotse.features.mfcc.Mfcc(config=None)
MFCC feature extractor based on torchaudio.compliance.kaldi.mfcc function.

name = 'mfcc'

config_type
alias of MfccConfig

feature_dim(sampling_rate)

60 Chapter 9. API Reference

lhotse, Release 0.1

Return type int

class lhotse.features.spectrogram.SpectrogramConfig(dither: float = 0.0, window_type:
str = 'povey', frame_length: float
= 0.025, frame_shift: float =
0.01, remove_dc_offset: bool =
True, round_to_power_of_two:
bool = True, energy_floor: float
= 1e-10, min_duration: float
= 0.0, preemphasis_coefficient:
float = 0.97, raw_energy: bool =
True)

dither: float = 0.0

window_type: str = 'povey'

frame_length: float = 0.025

frame_shift: float = 0.01

remove_dc_offset: bool = True

round_to_power_of_two: bool = True

energy_floor: float = 1e-10

min_duration: float = 0.0

preemphasis_coefficient: float = 0.97

raw_energy: bool = True

__init__(dither=0.0, window_type='povey', frame_length=0.025, frame_shift=0.01, re-
move_dc_offset=True, round_to_power_of_two=True, energy_floor=1e-10,
min_duration=0.0, preemphasis_coefficient=0.97, raw_energy=True)

Initialize self. See help(type(self)) for accurate signature.

class lhotse.features.spectrogram.Spectrogram(config=None)
Log spectrogram feature extractor based on torchaudio.compliance.kaldi.spectrogram function.

name = 'spectrogram'

config_type
alias of SpectrogramConfig

feature_dim(sampling_rate)

Return type int

static mix(features_a, features_b, energy_scaling_factor_b)
Perform feature-domain mix of two singals, a and b, and return the mixed signal.

Parameters

• features_a (ndarray) – Left-hand side (reference) signal.

• features_b (ndarray) – Right-hand side (mixed-in) signal.

• energy_scaling_factor_b (float) – A scaling factor for features_b energy.
It is used to achieve a specific SNR. E.g. to mix with an SNR of 10dB when both
features_a and features_b energies are 100, the features_b signal energy
needs to be scaled by 0.1. Since different features (e.g. spectrogram, fbank, MFCC)
require different combination of transformations (e.g. exp, log, sqrt, pow) to allow mixing

9.4. Feature extraction and manifests 61

lhotse, Release 0.1

of two signals, the exact place where to apply energy_scaling_factor_b to the
signal is determined by the implementer.

Return type ndarray

Returns A mixed feature matrix.

static compute_energy(features)
Compute the total energy of a feature matrix. How the energy is computed depends on a particular type of
features. It is expected that when implemented, compute_energy will never return zero.

Parameters features (ndarray) – A feature matrix.

Return type float

Returns A positive float value of the signal energy.

9.4.3 Feature storage

class lhotse.features.io.FeaturesWriter
FeaturesWriter defines the interface of how to store numpy arrays in a particular storage backend. This
backend could either be:

• separate files on a local filesystem;

• a single file with multiple arrays;

• cloud storage;

• etc.

Each class inheriting from FeaturesWriter must define:

• the write() method, which defines the storing operation (accepts a key used to place the value
array in the storage);

• the storage_path() property, which is either a common directory for the files, the name of the
file storing multiple arrays, name of the cloud bucket, etc.

• the name() property that is unique to this particular storage mechanism - it is stored in the features
manifests (metadata) and used to automatically deduce the backend when loading the features.

Each FeaturesWriter can also be used as a context manager, as some implementations might need to free
a resource after the writing is finalized. By default nothing happens in the context manager functions, and this
can be modified by the inheriting subclasses.

Example:

with MyWriter(‘some/path’) as storage: extractor.extract_from_recording_and_store(recording, stor-
age)

The features loading must be defined separately in a class inheriting from FeaturesReader.

abstract property name

Return type str

abstract property storage_path

Return type str

abstract write(key, value)

Return type str

62 Chapter 9. API Reference

lhotse, Release 0.1

class lhotse.features.io.FeaturesReader
FeaturesReader defines the interface of how to load numpy arrays from a particular storage backend. This
backend could either be:

• separate files on a local filesystem;

• a single file with multiple arrays;

• cloud storage;

• etc.

Each class inheriting from FeaturesReader must define:

• the read() method, which defines the loading operation (accepts the key to locate the array in the
storage and return it). The read method should support selecting only a subset of the feature matrix,
with the bounds expressed as arguments left_offset_frames and right_offset_frames.
It’s up to the Reader implementation to load only the required part or trim it to that range only after
loading. It is assumed that the time dimension is always the first one.

• the name() property that is unique to this particular storage mechanism - it is stored in the features
manifests (metadata) and used to automatically deduce the backend when loading the features.

The features writing must be defined separately in a class inheriting from FeaturesWriter.

abstract property name

Return type str

abstract read(key, left_offset_frames=0, right_offset_frames=None)

Return type ndarray

lhotse.features.io.available_storage_backends()

Return type List[str]

lhotse.features.io.register_reader(cls)
Decorator used to add a new FeaturesReader to Lhotse’s registry.

Example:

@register_reader class MyFeatureReader(FeatureReader):

. . .

lhotse.features.io.register_writer(cls)
Decorator used to add a new FeaturesWriter to Lhotse’s registry.

Example:

@register_writer class MyFeatureWriter(FeatureWriter):

. . .

lhotse.features.io.get_reader(name)
Find a FeaturesReader sub-class that corresponds to the provided name and return its type.

Example:

reader_type = get_reader(“lilcom_files”) reader = reader_type(“/storage/features/”)

Return type Type[FeaturesReader]

9.4. Feature extraction and manifests 63

lhotse, Release 0.1

lhotse.features.io.get_writer(name)
Find a FeaturesWriter sub-class that corresponds to the provided name and return its type.

Example:

writer_type = get_writer(“lilcom_files”) writer = writer_type(“/storage/features/”)

Return type Type[FeaturesWriter]

class lhotse.features.io.LilcomFilesReader(storage_path, *args, **kwargs)
Reads Lilcom-compressed files from a directory on the local filesystem. storage_path corresponds to the
directory path; storage_key for each utterance is the name of the file in that directory.

name = 'lilcom_files'

__init__(storage_path, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

read(key, left_offset_frames=0, right_offset_frames=None)

Return type ndarray

class lhotse.features.io.LilcomFilesWriter(storage_path, tick_power=- 5, *args,
**kwargs)

Writes Lilcom-compressed files to a directory on the local filesystem. storage_path corresponds to the
directory path; storage_key for each utterance is the name of the file in that directory.

name = 'lilcom_files'

__init__(storage_path, tick_power=- 5, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

property storage_path

Return type str

write(key, value)

Return type str

class lhotse.features.io.NumpyFilesReader(storage_path, *args, **kwargs)
Reads non-compressed numpy arrays from files in a directory on the local filesystem. storage_path corre-
sponds to the directory path; storage_key for each utterance is the name of the file in that directory.

name = 'numpy_files'

__init__(storage_path, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

read(key, left_offset_frames=0, right_offset_frames=None)

Return type ndarray

class lhotse.features.io.NumpyFilesWriter(storage_path, *args, **kwargs)
Writes non-compressed numpy arrays to files in a directory on the local filesystem. storage_path corre-
sponds to the directory path; storage_key for each utterance is the name of the file in that directory.

name = 'numpy_files'

__init__(storage_path, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

property storage_path

Return type str

64 Chapter 9. API Reference

lhotse, Release 0.1

write(key, value)

Return type str

lhotse.features.io.lookup_cache_or_open(storage_path)
Helper internal function used in HDF5 readers. It opens the HDF files and keeps their handles open in a global
program cache to avoid excessive amount of syscalls when the *Reader class is instantiated and destroyed in a
loop repeatedly (frequent use-case).

The file handles can be freed at any time by calling close_cached_file_handles().

lhotse.features.io.close_cached_file_handles()
Closes the cached file handles in lookup_cache_or_open (see its docs for more details).

Return type None

class lhotse.features.io.NumpyHdf5Reader(storage_path, *args, **kwargs)
Reads non-compressed numpy arrays from a HDF5 file with a “flat” layout. Each array is stored as a separate
HDF Dataset because their shapes (numbers of frames) may vary. storage_path corresponds to the
HDF5 file path; storage_key for each utterance is the key corresponding to the array (i.e. HDF5 “Group”
name).

name = 'numpy_hdf5'

__init__(storage_path, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

read(key, left_offset_frames=0, right_offset_frames=None)

Return type ndarray

class lhotse.features.io.NumpyHdf5Writer(storage_path, *args, **kwargs)
Writes non-compressed numpy arrays to a HDF5 file with a “flat” layout. Each array is stored as a separate HDF
Dataset because their shapes (numbers of frames) may vary. storage_path corresponds to the HDF5 file
path; storage_key for each utterance is the key corresponding to the array (i.e. HDF5 “Group” name).

name = 'numpy_hdf5'

__init__(storage_path, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

property storage_path

Return type str

write(key, value)

Return type str

close()

Return type None

class lhotse.features.io.LilcomHdf5Reader(storage_path, *args, **kwargs)
Reads lilcom-compressed numpy arrays from a HDF5 file with a “flat” layout. Each array is stored as a separate
HDF Dataset because their shapes (numbers of frames) may vary. storage_path corresponds to the
HDF5 file path; storage_key for each utterance is the key corresponding to the array (i.e. HDF5 “Group”
name).

name = 'lilcom_hdf5'

__init__(storage_path, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

read(key, left_offset_frames=0, right_offset_frames=None)

9.4. Feature extraction and manifests 65

lhotse, Release 0.1

Return type ndarray

class lhotse.features.io.LilcomHdf5Writer(storage_path, tick_power=- 5, *args,
**kwargs)

Writes lilcom-compressed numpy arrays to a HDF5 file with a “flat” layout. Each array is stored as a separate
HDF Dataset because their shapes (numbers of frames) may vary. storage_path corresponds to the
HDF5 file path; storage_key for each utterance is the key corresponding to the array (i.e. HDF5 “Group”
name).

name = 'lilcom_hdf5'

__init__(storage_path, tick_power=- 5, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

property storage_path

Return type str

write(key, value)

Return type str

close()

Return type None

9.4.4 Feature-domain mixing

class lhotse.features.mixer.FeatureMixer(feature_extractor, base_feats, frame_shift,
padding_value=- 1000.0)

Utility class to mix multiple feature matrices into a single one. It should be instantiated separately for each
mixing session (i.e. each MixedCut will create a separate FeatureMixer to mix its tracks). It is initialized
with a numpy array of features (typically float32) that represents the “reference” signal for the mix. Other
signals can be mixed to it with different time offsets and SNRs using the add_to_mix method. The time
offset is relative to the start of the reference signal (only positive values are supported). The SNR is relative to
the energy of the signal used to initialize the FeatureMixer.

It relies on the FeatureExtractor to have defined mix and compute_energy methods, so that the
FeatureMixer knows how to scale and add two feature matrices together.

__init__(feature_extractor, base_feats, frame_shift, padding_value=- 1000.0)

Parameters

• feature_extractor (FeatureExtractor) – The FeatureExtractor in-
stance that specifies how to mix the features.

• base_feats (ndarray) – The features used to initialize the FeatureMixer are a
point of reference in terms of energy and offset for all features mixed into them.

• frame_shift (float) – Required to correctly compute offset and padding during the
mix.

• padding_value (float) – The value used to pad the shorter features during the mix.
This value is adequate only for log space features. For non-log space features, e.g. ener-
gies, use either 0 or a small positive value like 1e-5.

property num_features

property unmixed_feats
Return a numpy ndarray with the shape (num_tracks, num_frames, num_features), where each track’s
feature matrix is padded and scaled adequately to the offsets and SNR used in add_to_mix call.

66 Chapter 9. API Reference

lhotse, Release 0.1

Return type ndarray

property mixed_feats
Return a numpy ndarray with the shape (num_frames, num_features) - a mono mixed feature matrix of the
tracks supplied with add_to_mix calls.

Return type ndarray

add_to_mix(feats, snr=None, offset=0.0)
Add feature matrix of a new track into the mix. :type feats: ndarray :param feats: A 2D feature matrix
to be mixed in. :type snr: Optional[float] :param snr: Signal-to-noise ratio, assuming feats rep-
resents noise (positive SNR - lower feats energy, negative SNR - higher feats energy) :type offset:
float :param offset: How many seconds to shift feats in time. For mixing, the signal will be padded
before the start with low energy values.

9.5 Augmentation

9.6 Cuts

Data structures and tools used to create training/testing examples.

class lhotse.cut.CutUtilsMixin
A mixin class for cuts which contains all the methods that share common implementations.

Note: Ideally, this would’ve been an abstract base class specifying the common interface, but ABC’s do not mix
well with dataclasses in Python. It is possible we’ll ditch the dataclass for cuts in the future and make this an
ABC instead.

property trimmed_supervisions
Return the supervisions in this Cut that have modified time boundaries so as not to exceed the Cut’s start
or end.

Note that when cut.supervisions is called, the supervisions may have negative start values that
indicate the supervision actually begins before the cut, or end values that exceed the Cut’s duration (it
means the supervision continued in the original recording after the Cut’s ending).

Return type List[SupervisionSegment]

mix(other, offset_other_by=0.0, snr=None)
Refer to mix() documentation.

Return type MixedCut

append(other, snr=None)
Append the other Cut after the current Cut. Conceptually the same as mix but with an offset matching
the current cuts length. Optionally scale down (positive SNR) or scale up (negative SNR) the other cut.
Returns a MixedCut, which only keeps the information about the mix; actual mixing is performed during
the call to load_features.

Return type MixedCut

compute_features(extractor, augment_fn=None)
Compute the features from this cut. This cut has to be able to load audio.

Parameters

• extractor (FeatureExtractor) – a FeatureExtractor instance used to com-
pute the features.

9.5. Augmentation 67

lhotse, Release 0.1

• augment_fn (Optional[Callable[[ndarray, int], ndarray]]) – optional
WavAugmenter instance for audio augmentation.

Return type ndarray

Returns a numpy ndarray with the computed features.

plot_audio()
Display a plot of the waveform. Requires matplotlib to be installed.

play_audio()
Display a Jupyter widget that allows to listen to the waveform. Works only in Jupyter notebook/lab or
similar (e.g. Colab).

plot_features()
Display the feature matrix as an image. Requires matplotlib to be installed.

speakers_feature_mask(min_speaker_dim=None, speaker_to_idx_map=None)
Return a matrix of per-speaker activity in a cut. The matrix shape is (num_speakers, num_frames), and its
values are 0 for nonspeech frames and 1 for speech frames for each respective speaker.

This is somewhat inspired by the TS-VAD setup: https://arxiv.org/abs/2005.07272

Parameters

• min_speaker_dim (Optional[int]) – optional int, when specified it will enforce
that the matrix shape is at least that value (useful for datasets like CHiME 6 where the
number of speakers is always 4, but some cuts might have less speakers than that).

• speaker_to_idx_map (Optional[Dict[str, int]]) – optional dict mapping
speaker names (strings) to their global indices (ints). Useful when you want to preserve
the order of the speakers (e.g. speaker XYZ is always mapped to index 2)

Return type ndarray

speakers_audio_mask(min_speaker_dim=None, speaker_to_idx_map=None)
Return a matrix of per-speaker activity in a cut. The matrix shape is (num_speakers, num_samples), and
its values are 0 for nonspeech samples and 1 for speech samples for each respective speaker.

This is somewhat inspired by the TS-VAD setup: https://arxiv.org/abs/2005.07272

Parameters

• min_speaker_dim (Optional[int]) – optional int, when specified it will enforce
that the matrix shape is at least that value (useful for datasets like CHiME 6 where the
number of speakers is always 4, but some cuts might have less speakers than that).

• speaker_to_idx_map (Optional[Dict[str, int]]) – optional dict mapping
speaker names (strings) to their global indices (ints). Useful when you want to preserve
the order of the speakers (e.g. speaker XYZ is always mapped to index 2)

Return type ndarray

supervisions_feature_mask()
Return a 1D numpy array with value 1 for frames covered by at least one supervision, and 0 for frames
not covered by any supervision.

Return type ndarray

supervisions_audio_mask()
Return a 1D numpy array with value 1 for samples covered by at least one supervision, and 0 for samples
not covered by any supervision.

Return type ndarray

68 Chapter 9. API Reference

https://arxiv.org/abs/2005.07272
https://arxiv.org/abs/2005.07272

lhotse, Release 0.1

with_id(id_)
Return a copy of the Cut with a new ID.

Return type Union[Cut, MixedCut, PaddingCut]

class lhotse.cut.Cut(id: str, start: float, duration: float, channel: int, supervisions:
List[lhotse.supervision.SupervisionSegment] = <factory>, features:
Optional[lhotse.features.base.Features] = None, recording: Op-
tional[lhotse.audio.Recording] = None)

A Cut is a single “segment” that we’ll train on. It contains the features corresponding to a piece of a recording,
with zero or more SupervisionSegments.

The SupervisionSegments indicate which time spans of the Cut contain some kind of supervision information:
e.g. transcript, speaker, language, etc. The regions without a corresponding SupervisionSegment may contain
anything - usually we assume it’s either silence or some kind of noise.

Note: The SupervisionSegment time boundaries are relative to the beginning of the cut. E.g. if the underlying
Recording starts at 0s (always true), the Cut starts at 100s, and the SupervisionSegment starts at 3s, it means that
in the Recording the supervision actually started at 103s. In some cases, the supervision might have a negative
start, or a duration exceeding the duration of the Cut; this means that the supervision in the recording extends
beyond the Cut.

id: str

start: Seconds

duration: Seconds

channel: int

supervisions: List[SupervisionSegment]

features: Optional[lhotse.features.base.Features] = None

recording: Optional[lhotse.audio.Recording] = None

property recording_id

Return type str

property end

Return type float

property has_features

Return type bool

property has_recording

Return type bool

property frame_shift

Return type Optional[float]

property num_frames

Return type Optional[int]

property num_samples

Return type Optional[int]

property num_features

Return type Optional[int]

9.6. Cuts 69

lhotse, Release 0.1

property features_type

Return type Optional[str]

property sampling_rate

Return type int

load_features()
Load the features from the underlying storage and cut them to the relevant [begin, duration] region of the
current Cut.

Return type Optional[ndarray]

load_audio()
Load the audio by locating the appropriate recording in the supplied RecordingSet. The audio is trimmed
to the [begin, end] range specified by the Cut.

Return type Optional[ndarray]

Returns a numpy ndarray with audio samples, with shape (1 <channel>, N <samples>)

compute_and_store_features(extractor, storage, augment_fn=None, *args, **kwargs)
Compute the features from this cut, store them on disk, and attach a feature manifest to this cut. This cut
has to be able to load audio.

Parameters

• extractor (FeatureExtractor) – a FeatureExtractor instance used to com-
pute the features.

• output_dir – the directory where the computed features will be stored.

• augment_fn (Optional[Callable[[ndarray, int], ndarray]]) – an optional
callable used for audio augmentation.

Return type Union[Cut, MixedCut, PaddingCut]

Returns a new Cut instance with a Features manifest attached to it.

truncate(*, offset=0.0, duration=None, keep_excessive_supervisions=True, preserve_id=False)
Returns a new Cut that is a sub-region of the current Cut.

Note that no operation is done on the actual features - it’s only during the call to load_features() when the
actual changes happen (a subset of features is loaded).

Parameters

• offset (float) – float (seconds), controls the start of the new cut relative to the current
Cut’s start. E.g., if the current Cut starts at 10.0, and offset is 2.0, the new start is 12.0.

• duration (Optional[float]) – optional float (seconds), controls the duration of the
resulting Cut. By default, the duration is (end of the cut before truncation) - (offset).

• keep_excessive_supervisions (bool) – bool. Since trimming may happen in-
side a SupervisionSegment, the caller has an option to either keep or discard such super-
visions.

• preserve_id (bool) – bool. Should the truncated cut keep the same ID or get a new,
random one.

Return type Cut

Returns a new Cut instance. If the current Cut is shorter than the duration, return None.

70 Chapter 9. API Reference

lhotse, Release 0.1

pad(duration)
Return a new MixedCut, padded to duration seconds with zeros in the recording, and low-energy values
in each feature bin.

Parameters duration (float) – The cut’s minimal duration after padding.

Return type Union[Cut, MixedCut, PaddingCut]

Returns a padded MixedCut if duration is greater than this cut’s duration, otherwise self.

map_supervisions(transform_fn)
Modify the SupervisionSegments by transform_fn of this Cut.

Parameters transform_fn (Callable[[SupervisionSegment],
SupervisionSegment]) – a function that modifies a supervision as an argument.

Return type Union[Cut, MixedCut, PaddingCut]

Returns a modified Cut.

static from_dict(data)

Return type Cut

with_features_path_prefix(path)

Return type Cut

with_recording_path_prefix(path)

Return type Cut

__init__(id, start, duration, channel, supervisions=<factory>, features=None, recording=None)
Initialize self. See help(type(self)) for accurate signature.

class lhotse.cut.PaddingCut(id: str, duration: float, sampling_rate: int, use_log_energy: bool,
num_frames: Optional[int] = None, num_features: Optional[int] =
None, num_samples: Optional[int] = None)

This represents a cut filled with zeroes in the time domain, or low energy/log-energy values in the frequency
domain. It’s used to make training samples evenly sized (same duration/number of frames).

id: str

duration: Seconds

sampling_rate: int

use_log_energy: bool

num_frames: Optional[int] = None

num_features: Optional[int] = None

num_samples: Optional[int] = None

property start

Return type float

property end

Return type float

property supervisions

property has_features

Return type bool

9.6. Cuts 71

lhotse, Release 0.1

property has_recording

Return type bool

property frame_shift

load_features(*args, **kwargs)

Return type Optional[ndarray]

load_audio(*args, **kwargs)

Return type Optional[ndarray]

truncate(*, offset=0.0, duration=None, keep_excessive_supervisions=True, preserve_id=False)

Return type PaddingCut

pad(duration)
Create a new PaddingCut with duration when its longer than this Cuts duration. Helper function used
in batch cut padding.

Parameters duration (float) – The cuts minimal duration after padding.

Return type PaddingCut

Returns self or a new PaddingCut, depending on duration.

compute_and_store_features(extractor, *args, **kwargs)
Returns a new PaddingCut with updates information about the feature dimension and number of feature
frames, depending on the extractor properties.

Return type Union[Cut, MixedCut, PaddingCut]

map_supervisions(transform_fn)
Just for consistency with Cut and MixedCut.

Parameters transform_fn (Callable[[Any], Any]) – a dummy function that would be
never called actually.

Return type Union[Cut, MixedCut, PaddingCut]

Returns the PaddingCut itself.

static from_dict(data)

Return type PaddingCut

with_features_path_prefix(path)

Return type PaddingCut

with_recording_path_prefix(path)

Return type PaddingCut

__init__(id, duration, sampling_rate, use_log_energy, num_frames=None, num_features=None,
num_samples=None)

Initialize self. See help(type(self)) for accurate signature.

class lhotse.cut.MixTrack(cut: Union[lhotse.cut.Cut, lhotse.cut.PaddingCut], offset: float = 0.0,
snr: Optional[float] = None)

Represents a single track in a mix of Cuts. Points to a specific Cut and holds information on how to mix it with
other Cuts, relative to the first track in a mix.

cut: Union[Cut, PaddingCut]

offset: float = 0.0

72 Chapter 9. API Reference

lhotse, Release 0.1

snr: Optional[float] = None

static from_dict(data)

__init__(cut, offset=0.0, snr=None)
Initialize self. See help(type(self)) for accurate signature.

class lhotse.cut.MixedCut(id: str, tracks: List[lhotse.cut.MixTrack])
Represents a Cut that’s created from other Cuts via mix or append operations. The actual mixing operations are
performed upon loading the features into memory. In order to load the features, it needs to access the CutSet
object that holds the “ingredient” cuts, as it only holds their IDs (“pointers”). The SNR and offset of all the
tracks are specified relative to the first track.

id: str

tracks: List[MixTrack]

property supervisions
Lists the supervisions of the underlying source cuts. Each segment start time will be adjusted by the track
offset.

Return type List[SupervisionSegment]

property start

Return type float

property end

Return type float

property duration

Return type float

property has_features

Return type bool

property has_recording

Return type bool

property num_frames

Return type Optional[int]

property frame_shift

Return type Optional[float]

property sampling_rate

Return type Optional[int]

property num_samples

Return type Optional[int]

property num_features

Return type Optional[int]

property features_type

Return type Optional[str]

9.6. Cuts 73

lhotse, Release 0.1

truncate(*, offset=0.0, duration=None, keep_excessive_supervisions=True, preserve_id=False)
Returns a new MixedCut that is a sub-region of the current MixedCut. This method truncates the under-
lying Cuts and modifies their offsets in the mix, as needed. Tracks that do not fit in the truncated cut are
removed.

Note that no operation is done on the actual features - it’s only during the call to load_features() when the
actual changes happen (a subset of features is loaded).

Parameters

• offset (float) – float (seconds), controls the start of the new cut relative to the current
MixedCut’s start.

• duration (Optional[float]) – optional float (seconds), controls the duration of the
resulting MixedCut. By default, the duration is (end of the cut before truncation) - (offset).

• keep_excessive_supervisions (bool) – bool. Since trimming may happen in-
side a SupervisionSegment, the caller has an option to either keep or discard such super-
visions.

• preserve_id (bool) – bool. Should the truncated cut keep the same ID or get a new,
random one.

Return type MixedCut

Returns a new MixedCut instance.

pad(duration)
Return a new MixedCut, padded to duration seconds with zeros in the recording, and low-energy values
in each feature bin.

Parameters duration (float) – The cut’s minimal duration after padding.

Return type Union[Cut, MixedCut, PaddingCut]

Returns a padded MixedCut if duration is greater than this cut’s duration, otherwise self.

load_features(mixed=True)
Loads the features of the source cuts and mixes them on-the-fly.

Parameters mixed (bool) – when True (default), returns a 2D array of features mixed in the
feature domain. Otherwise returns a 3D array with the first dimension equal to the number
of tracks.

Return type Optional[ndarray]

Returns A numpy ndarray with features and with shape (num_frames, num_features),
or (num_tracks, num_frames, num_features)

load_audio(mixed=True)
Loads the audios of the source cuts and mix them on-the-fly.

Parameters mixed (bool) – When True (default), returns a mono mix of the underlying tracks.
Otherwise returns a numpy array with the number of channels equal to the number of tracks.

Return type Optional[ndarray]

Returns A numpy ndarray with audio samples and with shape (num_channels,
num_samples)

plot_tracks_features()
Display the feature matrix as an image. Requires matplotlib to be installed.

plot_tracks_audio()
Display plots of the individual tracks’ waveforms. Requires matplotlib to be installed.

74 Chapter 9. API Reference

lhotse, Release 0.1

compute_and_store_features(extractor, storage, augment_fn=None, mix_eagerly=True)
Compute the features from this cut, store them on disk, and create a new Cut object with the feature
manifest attached. This cut has to be able to load audio.

Parameters

• extractor (FeatureExtractor) – a FeatureExtractor instance used to com-
pute the features.

• storage (FeaturesWriter) – a FeaturesWriter instance used to store the fea-
tures.

• augment_fn (Optional[Callable[[ndarray, int], ndarray]]) – an optional
callable used for audio augmentation.

• mix_eagerly (bool) – when False, extract and store the features for each track sepa-
rately, and mix them dynamically when loading the features. When True, mix the audio
first and store the mixed features, returning a new Cut instance with the same ID. The
returned Cut will not have a Recording attached.

Return type Union[Cut, MixedCut, PaddingCut]

Returns a new Cut instance if mix_eagerly is True, or returns self with each of the tracks
containing the Features manifests.

map_supervisions(transform_fn)
Modify the SupervisionSegments by transform_fn of this MixedCut.

Parameters transform_fn (Callable[[SupervisionSegment],
SupervisionSegment]) – a function that modifies a supervision as an argument.

Return type Union[Cut, MixedCut, PaddingCut]

Returns a modified MixedCut.

static from_dict(data)

Return type MixedCut

with_features_path_prefix(path)

Return type MixedCut

with_recording_path_prefix(path)

Return type MixedCut

__init__(id, tracks)
Initialize self. See help(type(self)) for accurate signature.

class lhotse.cut.CutSet(*args, **kwds)
CutSet combines features with their corresponding supervisions. It may have wider span than the actual super-
visions, provided the features for the whole span exist. It is the basic building block of PyTorch-style Datasets
for speech/audio processing tasks.

cuts: Dict[str, AnyCut]

property mixed_cuts

Return type Dict[str, MixedCut]

property simple_cuts

Return type Dict[str, Cut]

property ids

9.6. Cuts 75

lhotse, Release 0.1

Return type Iterable[str]

property speakers

Return type FrozenSet[str]

static from_cuts(cuts)

Return type CutSet

static from_manifests(recordings=None, supervisions=None, features=None)
Create a CutSet from any combination of supervision, feature and recording manifests. At least one
of recording_set or feature_set is required. The Cut boundaries correspond to those found
in the feature_set, when available, otherwise to those found in the recording_set When a
supervision_set is provided, we’ll attach to the Cut all supervisions that have a matching recording
ID and are fully contained in the Cut’s boundaries.

Return type CutSet

static from_dicts(data)

Return type CutSet

to_dicts()

Return type List[dict]

describe()
Print a message describing details about the CutSet - the number of cuts and the duration statistics,
including the total duration and the percentage of speech segments.

Example output: Cuts count: 547 Total duration (hours): 326.4 Speech duration (hours): 79.6 (24.4%)
*** Duration statistics (seconds): mean 2148.0 std 870.9 min 477.0 25% 1523.0 50% 2157.0 75%
2423.0 max 5415.0 dtype: float64

Return type None

split(num_splits, randomize=False)
Split the CutSet into num_splits pieces of equal size.

Parameters

• num_splits (int) – Requested number of splits.

• randomize (bool) – Optionally randomize the cuts order first.

Return type List[CutSet]

Returns A list of CutSet pieces.

filter(predicate)
Return a new CutSet with the Cuts that satisfy the predicate.

Parameters predicate (Callable[[Union[Cut, MixedCut, PaddingCut]], bool])
– a function that takes a cut as an argument and returns bool.

Return type CutSet

Returns a filtered CutSet.

trim_to_supervisions()
Return a new CutSet with Cuts that have identical spans as their supervisions.

Return type CutSet

Returns a CutSet.

76 Chapter 9. API Reference

lhotse, Release 0.1

trim_to_unsupervised_segments()
Return a new CutSet with Cuts created from segments that have no supervisions (likely silence or noise).

Return type CutSet

Returns a CutSet.

mix_same_recording_channels()
Find cuts that come from the same recording and have matching start and end times, but represent different
channels. Then, mix them together (in matching groups) and return a new CutSet that contains their
mixes. This is useful for processing microphone array recordings.

It is intended to be used as the first operation after creating a new CutSet (but might also work in other
circumstances, e.g. if it was cut to windows first).

Example:

>>> ami = prepare_ami('path/to/ami')
>>> cut_set = CutSet.from_manifests(recordings=ami['train']['recordings'])
>>> multi_channel_cut_set = cut_set.mix_same_recording_channels()

In the AMI example, the multi_channel_cut_set will yield MixedCuts that hold all single-channel
Cuts together.

Return type CutSet

sort_by_duration(ascending=False)
Sort the CutSet according to cuts duration. Descending by default.

Return type CutSet

pad(duration=None)
Return a new CutSet with Cuts padded to duration in seconds. Cuts longer than duration will not
be affected. Cuts will be padded to the right (i.e. after the signal). :type duration: Optional[float]
:param duration: The cuts minimal duration after padding. When not specified, we’ll choose the duration
of the longest cut in the CutSet. :rtype: CutSet :return: A padded CutSet.

truncate(max_duration, offset_type, keep_excessive_supervisions=True, preserve_id=False)
Return a new CutSet with the Cuts truncated so that their durations are at most max_duration. Cuts
shorter than max_duration will not be changed. :type max_duration: float :param max_duration: float,
the maximum duration in seconds of a cut in the resulting manifest. :type offset_type: str :param off-
set_type: str, can be: - ‘start’ => cuts are truncated from their start; - ‘end’ => cuts are truncated from
their end minus max_duration; - ‘random’ => cuts are truncated randomly between their start and their
end minus max_duration :type keep_excessive_supervisions: bool :param keep_excessive_supervisions:
bool. When a cut is truncated in the middle of a supervision segment, should the supervision be kept. :type
preserve_id: bool :param preserve_id: bool. Should the truncated cut keep the same ID or get a new,
random one. :rtype: CutSet :return: a new CutSet instance with truncated cuts.

cut_into_windows(duration, keep_excessive_supervisions=True)
Return a new CutSet, made by traversing each Cut in windows of duration seconds and creating
new Cut out of them.

The last window might have a shorter duration if there was not enough audio, so you might want to use
either .filter() or .pad() afterwards to obtain a uniform duration CutSet.

Parameters

• duration (float) – Desired duration of the new cuts in seconds.

• keep_excessive_supervisions (bool) – bool. When a cut is truncated in the
middle of a supervision segment, should the supervision be kept.

9.6. Cuts 77

lhotse, Release 0.1

Return type CutSet

Returns a new CutSet with cuts made from shorter duration windows.

compute_and_store_features(extractor, storage, augment_fn=None, executor=None,
mix_eagerly=True)

Modify the current CutSet with by extracting features and attaching the feature manifests to the cuts.

Parameters

• extractor (FeatureExtractor) – A FeatureExtractor instance (either
Lhotse’s built-in or a custom implementation).

• storage (FeaturesWriter) – A FeaturesWriter instance used to store the fea-
tures.

• augment_fn (Optional[Callable[[ndarray, int], ndarray]]) – an optional
callable used for audio augmentation.

• executor (Optional[Any]) – when provided, will be used to parallelize the fea-
ture extraction process. Any executor satisfying the standard concurrent.futures inter-
face will be suitable; e.g. ProcessPoolExecutor, ThreadPoolExecutor, or dask.Client
for distributed task execution (see: https://docs.dask.org/en/latest/futures.html?highlight=
Client#start-dask-client)

• mix_eagerly (bool) – Related to how the features are extracted for MixedCut in-
stances, if any are present. When False, extract and store the features for each track sep-
arately, and mix them dynamically when loading the features. When True, mix the audio
first and store the mixed features, returning a new Cut instance with the same ID. The
returned Cut will not have a Recording attached.

Return type CutSet

Returns a new CutSet instance with the same Cut``s, but with attached
``Features objects

with_features_path_prefix(path)

Return type CutSet

with_recording_path_prefix(path)

Return type CutSet

map_supervisions(transform_fn)
Modify the SupervisionSegments by transform_fn in this CutSet.

Parameters transform_fn (Callable[[SupervisionSegment],
SupervisionSegment]) – a function that modifies a supervision as an argument.

Return type CutSet

Returns a new, modified CutSet.

transform_text(transform_fn)
Return a copy of this CutSet with all SupervisionSegments text transformed with
transform_fn. Useful for text normalization, phonetic transcription, etc.

Parameters transform_fn (Callable[[str], str]) – a function that accepts a string and
returns a string.

Return type CutSet

Returns a new, modified CutSet.

78 Chapter 9. API Reference

https://docs.dask.org/en/latest/futures.html?highlight=Client#start-dask-client
https://docs.dask.org/en/latest/futures.html?highlight=Client#start-dask-client

lhotse, Release 0.1

__init__(cuts)
Initialize self. See help(type(self)) for accurate signature.

lhotse.cut.make_windowed_cuts_from_features(feature_set, cut_duration, cut_shift=None,
keep_shorter_windows=False)

Converts a FeatureSet to a CutSet by traversing each Features object in - possibly overlapping - windows, and
creating a Cut out of that area. By default, the last window in traversal will be discarded if it cannot satisfy the
cut_duration requirement.

Parameters

• feature_set (FeatureSet) – a FeatureSet object.

• cut_duration (float) – float, duration of created Cuts in seconds.

• cut_shift (Optional[float]) – optional float, specifies how many seconds are in
between the starts of consecutive windows. Equals cut_duration by default.

• keep_shorter_windows (bool) – bool, when True, the last window will be used to
create a Cut even if its duration is shorter than cut_duration.

Return type CutSet

Returns a CutSet object.

lhotse.cut.mix(reference_cut, mixed_in_cut, offset=0, snr=None)
Overlay, or mix, two cuts. Optionally the mixed_in_cut may be shifted by offset seconds and scaled down (posi-
tive SNR) or scaled up (negative SNR). Returns a MixedCut, which contains both cuts and the mix information.
The actual feature mixing is performed during the call to MixedCut.load_features().

Parameters

• reference_cut (Union[Cut, MixedCut, PaddingCut]) – The reference cut for the
mix - offset and snr are specified w.r.t this cut.

• mixed_in_cut (Union[Cut, MixedCut, PaddingCut]) – The mixed-in cut - it will
be offset and rescaled to match the offset and snr parameters.

• offset (float) – How many seconds to shift the mixed_in_cut w.r.t. the
reference_cut.

• snr (Optional[float]) – Desired SNR of the right_cut w.r.t. the left_cut in the mix.

Return type MixedCut

Returns A MixedCut instance.

lhotse.cut.append(left_cut, right_cut, snr=None)
Helper method for functional-style appending of Cuts.

Return type MixedCut

lhotse.cut.mix_cuts(cuts)
Return a MixedCut that consists of the input Cuts mixed with each other as-is.

Return type MixedCut

lhotse.cut.append_cuts(cuts)
Return a MixedCut that consists of the input Cuts appended to each other as-is.

Return type Union[Cut, MixedCut, PaddingCut]

9.6. Cuts 79

lhotse, Release 0.1

9.7 Recipes

Convenience methods used to prepare recording and supervision manifests for standard corpora.

9.8 Kaldi conversion

Convenience methods used to interact with Kaldi data directories.

lhotse.kaldi.load_kaldi_data_dir(path, sampling_rate)
Load a Kaldi data directory and convert it to a Lhotse RecordingSet and SupervisionSet manifests. For this to
work, at least the wav.scp file must exist. SupervisionSet is created only when a segments file exists. All the
other files (text, utt2spk, etc.) are optional, and some of them might not be handled yet. In particular, feats.scp
files are ignored.

Return type Tuple[RecordingSet, Optional[SupervisionSet]]

lhotse.kaldi.load_kaldi_text_mapping(path, must_exist=False)
Load Kaldi files such as utt2spk, spk2gender, text, etc. as a dict.

Return type Dict[str, Optional[str]]

9.9 Others

Helper methods used throughout the codebase.

lhotse.manipulation.combine(*manifests)
Combine multiple manifests of the same type into one.

Return type ~Manifest

lhotse.manipulation.to_manifest(items)
Take an iterable of data types in Lhotse such as Recording, SupervisonSegment or Cut, and create the manifest
of the corresponding type. When the iterable is empty, returns None.

Return type Optional[~Manifest]

lhotse.manipulation.load_manifest(path)
Generic utility for reading an arbitrary manifest.

Return type ~Manifest

80 Chapter 9. API Reference

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

81

lhotse, Release 0.1

82 Chapter 10. Indices and tables

PYTHON MODULE INDEX

l
lhotse.audio, 47
lhotse.augmentation, 67
lhotse.cut, 67
lhotse.dataset.diarization, 46
lhotse.dataset.source_separation, 44
lhotse.dataset.speech_recognition, 41
lhotse.dataset.unsupervised, 45
lhotse.dataset.vad, 46
lhotse.features.base, 53
lhotse.features.fbank, 58
lhotse.features.io, 62
lhotse.features.mfcc, 59
lhotse.features.mixer, 66
lhotse.features.spectrogram, 61
lhotse.kaldi, 80
lhotse.manipulation, 80
lhotse.recipes, 80
lhotse.supervision, 50

83

lhotse, Release 0.1

84 Python Module Index

INDEX

Symbols
__init__() (lhotse.audio.AudioMixer method), 49
__init__() (lhotse.audio.AudioSource method), 47
__init__() (lhotse.audio.Recording method), 48
__init__() (lhotse.audio.RecordingSet method), 49
__init__() (lhotse.cut.Cut method), 71
__init__() (lhotse.cut.CutSet method), 78
__init__() (lhotse.cut.MixTrack method), 73
__init__() (lhotse.cut.MixedCut method), 75
__init__() (lhotse.cut.PaddingCut method), 72
__init__() (lhotse.dataset.diarization.DiarizationDataset

method), 47
__init__() (lhotse.dataset.source_separation.DynamicallyMixedSourceSeparationDataset

method), 45
__init__() (lhotse.dataset.source_separation.PreMixedSourceSeparationDataset

method), 45
__init__() (lhotse.dataset.source_separation.SourceSeparationDataset

method), 44
__init__() (lhotse.dataset.speech_recognition.K2DataLoader

method), 43
__init__() (lhotse.dataset.speech_recognition.K2SpeechRecognitionDataset

method), 43
__init__() (lhotse.dataset.speech_recognition.K2SpeechRecognitionIterableDataset

method), 42
__init__() (lhotse.dataset.speech_recognition.SpeechRecognitionDataset

method), 41
__init__() (lhotse.dataset.unsupervised.DynamicUnsupervisedDataset

method), 46
__init__() (lhotse.dataset.unsupervised.UnsupervisedDataset

method), 45
__init__() (lhotse.dataset.vad.VadDataset method),

46
__init__() (lhotse.features.base.FeatureExtractor

method), 53
__init__() (lhotse.features.base.FeatureSet method),

57
__init__() (lhotse.features.base.FeatureSetBuilder

method), 58
__init__() (lhotse.features.base.Features method),

56
__init__() (lhotse.features.fbank.FbankConfig

method), 59

__init__() (lhotse.features.io.LilcomFilesReader
method), 64

__init__() (lhotse.features.io.LilcomFilesWriter
method), 64

__init__() (lhotse.features.io.LilcomHdf5Reader
method), 65

__init__() (lhotse.features.io.LilcomHdf5Writer
method), 66

__init__() (lhotse.features.io.NumpyFilesReader
method), 64

__init__() (lhotse.features.io.NumpyFilesWriter
method), 64

__init__() (lhotse.features.io.NumpyHdf5Reader
method), 65

__init__() (lhotse.features.io.NumpyHdf5Writer
method), 65

__init__() (lhotse.features.mfcc.MfccConfig
method), 60

__init__() (lhotse.features.mixer.FeatureMixer
method), 66

__init__() (lhotse.features.spectrogram.SpectrogramConfig
method), 61

__init__() (lhotse.supervision.SupervisionSegment
method), 51

__init__() (lhotse.supervision.SupervisionSet
method), 52

--augmentation <augmentation>
lhotse-feat-extract command line

option, 39
--cut-duration <cut_duration>

lhotse-cut-windowed command line
option, 37

--cut-shift <cut_shift>
lhotse-cut-windowed command line

option, 37
--discard-overflowing-supervisions

lhotse-cut-truncate command line
option, 36

--discard-shorter-windows
lhotse-cut-windowed command line

option, 37
--duration <duration>

85

lhotse, Release 0.1

lhotse-cut-pad command line option,
34

--feature-manifest <feature_manifest>
lhotse-cut-simple command line

option, 36
lhotse-feat-extract command line

option, 39
--feature-type <feature_type>

lhotse-feat-write-default-config
command line option, 40

--keep-overflowing-supervisions
lhotse-cut-truncate command line

option, 36
--keep-shorter-windows

lhotse-cut-windowed command line
option, 37

--lilcom-tick-power
<lilcom_tick_power>

lhotse-feat-extract command line
option, 39

--max-duration <max_duration>
lhotse-cut-truncate command line

option, 36
--min-segment-seconds

<min_segment_seconds>
lhotse-prepare-librimix command

line option, 31
--no-precomputed-mixtures

lhotse-prepare-librimix command
line option, 31

--num-jobs <num_jobs>
lhotse-feat-extract command line

option, 39
--offset-range <offset_range>

lhotse-cut-random-mixed command
line option, 35

--offset-type <offset_type>
lhotse-cut-truncate command line

option, 36
--omit-silence

lhotse-prepare-switchboard command
line option, 32

--preserve-id
lhotse-cut-truncate command line

option, 36
--randomize

lhotse-manifest-split command line
option, 38

--recording-manifest
<recording_manifest>

lhotse-cut-simple command line
option, 36

--retain-silence
lhotse-prepare-switchboard command

line option, 32
--root-dir <root_dir>

lhotse-feat-extract command line
option, 39

--sampling-rate <sampling_rate>
lhotse-prepare-librimix command

line option, 31
--sentiment-dir <sentiment_dir>

lhotse-prepare-switchboard command
line option, 32

--snr-range <snr_range>
lhotse-cut-random-mixed command

line option, 35
--storage-type <storage_type>

lhotse-feat-extract command line
option, 39

--supervision_manifest
<supervision_manifest>

lhotse-cut-simple command line
option, 36

--transcript-dir <transcript_dir>
lhotse-prepare-switchboard command

line option, 32
--with-precomputed-mixtures

lhotse-prepare-librimix command
line option, 31

-a
lhotse-feat-extract command line

option, 39
-d

lhotse-cut-pad command line option,
34

lhotse-cut-truncate command line
option, 36

lhotse-cut-windowed command line
option, 37

-f
lhotse-cut-simple command line

option, 36
lhotse-feat-extract command line

option, 39
lhotse-feat-write-default-config

command line option, 40
-j

lhotse-feat-extract command line
option, 39

-o
lhotse-cut-random-mixed command

line option, 35
lhotse-cut-truncate command line

option, 36
-r

lhotse-cut-simple command line
option, 36

86 Index

lhotse, Release 0.1

lhotse-feat-extract command line
option, 39

-s
lhotse-cut-random-mixed command

line option, 35
lhotse-cut-simple command line

option, 36
lhotse-cut-windowed command line

option, 37
-t

lhotse-feat-extract command line
option, 39

A
add_to_mix() (lhotse.audio.AudioMixer method), 49
add_to_mix() (lhotse.features.mixer.FeatureMixer

method), 67
append() (in module lhotse.cut), 79
append() (lhotse.cut.CutUtilsMixin method), 67
append_cuts() (in module lhotse.cut), 79
AUDIO_DIR

lhotse-prepare-broadcast-news
command line option, 31

lhotse-prepare-switchboard command
line option, 33

audio_energy() (in module lhotse.audio), 50
AudioMixer (class in lhotse.audio), 49
AudioSource (class in lhotse.audio), 47
available_storage_backends() (in module

lhotse.features.io), 63

B
batch_size (lhotse.dataset.speech_recognition.K2DataLoader

attribute), 43

C
cepstral_lifter (lhotse.features.mfcc.MfccConfig

attribute), 60
channel (lhotse.cut.Cut attribute), 69
channel (lhotse.supervision.SupervisionSegment at-

tribute), 50
channel_ids() (lhotse.audio.Recording property), 48
channels (lhotse.audio.AudioSource attribute), 47
channels (lhotse.features.base.Features attribute), 56
close() (lhotse.features.io.LilcomHdf5Writer method),

66
close() (lhotse.features.io.NumpyHdf5Writer

method), 65
close_cached_file_handles() (in module

lhotse.features.io), 65
combine() (in module lhotse.manipulation), 80
compute_and_store_features() (lhotse.cut.Cut

method), 70

compute_and_store_features()
(lhotse.cut.CutSet method), 78

compute_and_store_features()
(lhotse.cut.MixedCut method), 74

compute_and_store_features()
(lhotse.cut.PaddingCut method), 72

compute_energy() (lhotse.features.base.FeatureExtractor
static method), 54

compute_energy() (lhotse.features.fbank.Fbank
static method), 59

compute_energy() (lhotse.features.spectrogram.Spectrogram
static method), 62

compute_features() (lhotse.cut.CutUtilsMixin
method), 67

concat_cuts() (in module
lhotse.dataset.speech_recognition), 42

config_type (lhotse.features.base.FeatureExtractor
attribute), 53

config_type (lhotse.features.fbank.Fbank attribute),
59

config_type (lhotse.features.mfcc.Mfcc attribute), 60
config_type (lhotse.features.spectrogram.Spectrogram

attribute), 61
CORPUS_DIR

lhotse-prepare-mini-librispeech
command line option, 32

create_default_feature_extractor() (in
module lhotse.features.base), 55

custom (lhotse.supervision.SupervisionSegment at-
tribute), 50

Cut (class in lhotse.cut), 69
cut (lhotse.cut.MixTrack attribute), 72
cut_into_windows() (lhotse.cut.CutSet method),

77
CUT_MANIFEST

lhotse-cut-pad command line option,
35

lhotse-cut-truncate command line
option, 36

CUT_MANIFESTS
lhotse-cut-append command line

option, 33
lhotse-cut-mix-by-recording-id

command line option, 34
lhotse-cut-mix-sequential command

line option, 34
cuts (lhotse.cut.CutSet attribute), 75
CutSet (class in lhotse.cut), 75
CutUtilsMixin (class in lhotse.cut), 67

D
DATA_DIR

lhotse-convert-kaldi command line
option, 40

Index 87

lhotse, Release 0.1

dataset (lhotse.dataset.speech_recognition.K2DataLoader
attribute), 43

describe() (lhotse.cut.CutSet method), 76
DiarizationDataset (class in

lhotse.dataset.diarization), 46
dither (lhotse.features.fbank.FbankConfig attribute),

58
dither (lhotse.features.mfcc.MfccConfig attribute), 60
dither (lhotse.features.spectrogram.SpectrogramConfig

attribute), 61
drop_last (lhotse.dataset.speech_recognition.K2DataLoader

attribute), 44
duration (lhotse.audio.Recording attribute), 47
duration (lhotse.cut.Cut attribute), 69
duration (lhotse.cut.PaddingCut attribute), 71
duration (lhotse.features.base.Features attribute), 56
duration (lhotse.supervision.SupervisionSegment at-

tribute), 50
duration() (lhotse.audio.RecordingSet method), 49
duration() (lhotse.cut.MixedCut property), 73
DynamicallyMixedSourceSeparationDataset

(class in lhotse.dataset.source_separation), 44
DynamicUnsupervisedDataset (class in

lhotse.dataset.unsupervised), 45

E
end() (lhotse.cut.Cut property), 69
end() (lhotse.cut.MixedCut property), 73
end() (lhotse.cut.PaddingCut property), 71
end() (lhotse.features.base.Features property), 56
end() (lhotse.supervision.SupervisionSegment prop-

erty), 50
energy_floor (lhotse.features.fbank.FbankConfig at-

tribute), 58
energy_floor (lhotse.features.mfcc.MfccConfig at-

tribute), 60
energy_floor (lhotse.features.spectrogram.SpectrogramConfig

attribute), 61
extract() (lhotse.features.base.FeatureExtractor

method), 53
extract() (lhotse.features.base.TorchaudioFeatureExtractor

method), 55
extract_from_recording_and_store()

(lhotse.features.base.FeatureExtractor
method), 54

extract_from_samples_and_store()
(lhotse.features.base.FeatureExtractor
method), 54

F
Fbank (class in lhotse.features.fbank), 59
FbankConfig (class in lhotse.features.fbank), 58
feature_dim() (lhotse.features.base.FeatureExtractor

method), 53

feature_dim() (lhotse.features.fbank.Fbank
method), 59

feature_dim() (lhotse.features.mfcc.Mfcc method),
60

feature_dim() (lhotse.features.spectrogram.Spectrogram
method), 61

feature_fn (lhotse.features.base.TorchaudioFeatureExtractor
attribute), 55

FEATURE_MANIFEST
lhotse-cut-random-mixed command

line option, 35
lhotse-cut-windowed command line

option, 37
FeatureExtractor (class in lhotse.features.base), 53
FeatureMixer (class in lhotse.features.mixer), 66
Features (class in lhotse.features.base), 56
features (lhotse.cut.Cut attribute), 69
features (lhotse.features.base.FeatureSet attribute),

56
features_type() (lhotse.cut.Cut property), 69
features_type() (lhotse.cut.MixedCut property), 73
FeatureSet (class in lhotse.features.base), 56
FeatureSetBuilder (class in lhotse.features.base),

57
FeaturesReader (class in lhotse.features.io), 62
FeaturesWriter (class in lhotse.features.io), 62
filter() (lhotse.audio.RecordingSet method), 48
filter() (lhotse.cut.CutSet method), 76
filter() (lhotse.supervision.SupervisionSet method),

51
find() (lhotse.features.base.FeatureSet method), 57
find() (lhotse.supervision.SupervisionSet method), 52
frame_length (lhotse.features.fbank.FbankConfig at-

tribute), 58
frame_length (lhotse.features.mfcc.MfccConfig at-

tribute), 60
frame_length (lhotse.features.spectrogram.SpectrogramConfig

attribute), 61
frame_shift (lhotse.features.fbank.FbankConfig at-

tribute), 58
frame_shift (lhotse.features.mfcc.MfccConfig at-

tribute), 60
frame_shift (lhotse.features.spectrogram.SpectrogramConfig

attribute), 61
frame_shift() (lhotse.cut.Cut property), 69
frame_shift() (lhotse.cut.MixedCut property), 73
frame_shift() (lhotse.cut.PaddingCut property), 72
frame_shift() (lhotse.features.base.FeatureExtractor

property), 53
frame_shift() (lhotse.features.base.Features prop-

erty), 56
frame_shift() (lhotse.features.base.TorchaudioFeatureExtractor

property), 56
from_cuts() (lhotse.cut.CutSet static method), 76

88 Index

lhotse, Release 0.1

from_dict() (lhotse.audio.AudioSource static
method), 47

from_dict() (lhotse.audio.Recording static method),
48

from_dict() (lhotse.cut.Cut static method), 71
from_dict() (lhotse.cut.MixedCut static method), 75
from_dict() (lhotse.cut.MixTrack static method), 73
from_dict() (lhotse.cut.PaddingCut static method),

72
from_dict() (lhotse.features.base.FeatureExtractor

class method), 55
from_dict() (lhotse.features.base.Features static

method), 56
from_dict() (lhotse.supervision.SupervisionSegment

static method), 51
from_dicts() (lhotse.audio.RecordingSet static

method), 48
from_dicts() (lhotse.cut.CutSet static method), 76
from_dicts() (lhotse.features.base.FeatureSet static

method), 57
from_dicts() (lhotse.supervision.SupervisionSet

static method), 51
from_features() (lhotse.features.base.FeatureSet

static method), 56
from_manifests() (lhotse.cut.CutSet static method),

76
from_recordings() (lhotse.audio.RecordingSet

static method), 48
from_segments() (lhotse.supervision.SupervisionSet

static method), 51
from_sphere() (lhotse.audio.Recording static

method), 47
from_yaml() (lhotse.features.base.FeatureExtractor

class method), 55

G
gender (lhotse.supervision.SupervisionSegment at-

tribute), 50
get_extractor_type() (in module

lhotse.features.base), 55
get_reader() (in module lhotse.features.io), 63
get_writer() (in module lhotse.features.io), 63

H
has_features() (lhotse.cut.Cut property), 69
has_features() (lhotse.cut.MixedCut property), 73
has_features() (lhotse.cut.PaddingCut property),

71
has_recording() (lhotse.cut.Cut property), 69
has_recording() (lhotse.cut.MixedCut property), 73
has_recording() (lhotse.cut.PaddingCut property),

71
high_freq (lhotse.features.fbank.FbankConfig at-

tribute), 58

high_freq (lhotse.features.mfcc.MfccConfig attribute),
60

I
id (lhotse.audio.Recording attribute), 47
id (lhotse.cut.Cut attribute), 69
id (lhotse.cut.MixedCut attribute), 73
id (lhotse.cut.PaddingCut attribute), 71
id (lhotse.supervision.SupervisionSegment attribute), 50
ids() (lhotse.cut.CutSet property), 75

K
K2DataLoader (class in

lhotse.dataset.speech_recognition), 43
K2SpeechRecognitionDataset (class in

lhotse.dataset.speech_recognition), 43
K2SpeechRecognitionIterableDataset (class

in lhotse.dataset.speech_recognition), 41

L
language (lhotse.supervision.SupervisionSegment at-

tribute), 50
lhotse.audio

module, 47
lhotse.augmentation

module, 67
lhotse.cut

module, 67
lhotse.dataset.diarization

module, 46
lhotse.dataset.source_separation

module, 44
lhotse.dataset.speech_recognition

module, 41
lhotse.dataset.unsupervised

module, 45
lhotse.dataset.vad

module, 46
lhotse.features.base

module, 53
lhotse.features.fbank

module, 58
lhotse.features.io

module, 62
lhotse.features.mfcc

module, 59
lhotse.features.mixer

module, 66
lhotse.features.spectrogram

module, 61
lhotse.kaldi

module, 80
lhotse.manipulation

module, 80

Index 89

lhotse, Release 0.1

lhotse.recipes
module, 80

lhotse.supervision
module, 50

lhotse-convert-kaldi command line
option

DATA_DIR, 40
MANIFEST_DIR, 40
SAMPLING_RATE, 40

lhotse-cut-append command line option
CUT_MANIFESTS, 33
OUTPUT_CUT_MANIFEST, 33

lhotse-cut-mix-by-recording-id command
line option

CUT_MANIFESTS, 34
OUTPUT_CUT_MANIFEST, 34

lhotse-cut-mix-sequential command line
option

CUT_MANIFESTS, 34
OUTPUT_CUT_MANIFEST, 34

lhotse-cut-pad command line option
--duration <duration>, 34
-d, 34
CUT_MANIFEST, 35
OUTPUT_CUT_MANIFEST, 35

lhotse-cut-random-mixed command line
option

--offset-range <offset_range>, 35
--snr-range <snr_range>, 35
-o, 35
-s, 35
FEATURE_MANIFEST, 35
OUTPUT_CUT_MANIFEST, 35
SUPERVISION_MANIFEST, 35

lhotse-cut-simple command line option
--feature-manifest

<feature_manifest>, 36
--recording-manifest

<recording_manifest>, 36
--supervision_manifest

<supervision_manifest>, 36
-f, 36
-r, 36
-s, 36
OUTPUT_CUT_MANIFEST, 36

lhotse-cut-truncate command line
option

--discard-overflowing-supervisions,
36

--keep-overflowing-supervisions, 36
--max-duration <max_duration>, 36
--offset-type <offset_type>, 36
--preserve-id, 36
-d, 36

-o, 36
CUT_MANIFEST, 36
OUTPUT_CUT_MANIFEST, 36

lhotse-cut-windowed command line
option

--cut-duration <cut_duration>, 37
--cut-shift <cut_shift>, 37
--discard-shorter-windows, 37
--keep-shorter-windows, 37
-d, 37
-s, 37
FEATURE_MANIFEST, 37
OUTPUT_CUT_MANIFEST, 37

lhotse-feat-extract command line
option

--augmentation <augmentation>, 39
--feature-manifest

<feature_manifest>, 39
--lilcom-tick-power

<lilcom_tick_power>, 39
--num-jobs <num_jobs>, 39
--root-dir <root_dir>, 39
--storage-type <storage_type>, 39
-a, 39
-f, 39
-j, 39
-r, 39
-t, 39
OUTPUT_DIR, 39
RECORDING_MANIFEST, 39

lhotse-feat-write-default-config
command line option

--feature-type <feature_type>, 40
-f, 40
OUTPUT_CONFIG, 40

lhotse-manifest-combine command line
option

MANIFESTS, 37
OUTPUT_MANIFEST, 37

lhotse-manifest-filter command line
option

MANIFEST, 38
OUTPUT_MANIFEST, 38
PREDICATE, 38

lhotse-manifest-split command line
option

--randomize, 38
MANIFEST, 38
NUM_SPLITS, 38
OUTPUT_DIR, 38

lhotse-obtain-heroico command line
option

TARGET_DIR, 29

90 Index

lhotse, Release 0.1

lhotse-obtain-librimix command line
option

TARGET_DIR, 29
lhotse-obtain-mini-librispeech command

line option
TARGET_DIR, 30

lhotse-obtain-tedlium command line
option

TARGET_DIR, 30
lhotse-prepare-broadcast-news command

line option
AUDIO_DIR, 31
OUTPUT_DIR, 31
TRANSCRIPT_DIR, 31

lhotse-prepare-heroico command line
option

OUTPUT_DIR, 31
SPEECH_DIR, 31
TRANSCRIPT_DIR, 31

lhotse-prepare-librimix command line
option

--min-segment-seconds
<min_segment_seconds>, 31

--no-precomputed-mixtures, 31
--sampling-rate <sampling_rate>, 31
--with-precomputed-mixtures, 31
LIBRIMIX_CSV, 32
OUTPUT_DIR, 32

lhotse-prepare-mini-librispeech
command line option

CORPUS_DIR, 32
OUTPUT_DIR, 32

lhotse-prepare-switchboard command
line option

--omit-silence, 32
--retain-silence, 32
--sentiment-dir <sentiment_dir>, 32
--transcript-dir <transcript_dir>,

32
AUDIO_DIR, 33
OUTPUT_DIR, 33

lhotse-prepare-tedlium command line
option

OUTPUT_DIR, 33
TEDLIUM_DIR, 33

LIBRIMIX_CSV
lhotse-prepare-librimix command

line option, 32
LilcomFilesReader (class in lhotse.features.io), 64
LilcomFilesWriter (class in lhotse.features.io), 64
LilcomHdf5Reader (class in lhotse.features.io), 65
LilcomHdf5Writer (class in lhotse.features.io), 66
load() (lhotse.features.base.Features method), 56
load() (lhotse.features.base.FeatureSet method), 57

load_audio() (lhotse.audio.AudioSource method), 47
load_audio() (lhotse.audio.Recording method), 48
load_audio() (lhotse.audio.RecordingSet method),

49
load_audio() (lhotse.cut.Cut method), 70
load_audio() (lhotse.cut.MixedCut method), 74
load_audio() (lhotse.cut.PaddingCut method), 72
load_features() (lhotse.cut.Cut method), 70
load_features() (lhotse.cut.MixedCut method), 74
load_features() (lhotse.cut.PaddingCut method),

72
load_kaldi_data_dir() (in module lhotse.kaldi),

80
load_kaldi_text_mapping() (in module

lhotse.kaldi), 80
load_manifest() (in module lhotse.manipulation),

80
lookup_cache_or_open() (in module

lhotse.features.io), 65
low_freq (lhotse.features.fbank.FbankConfig at-

tribute), 58
low_freq (lhotse.features.mfcc.MfccConfig attribute),

60

M
make_windowed_cuts_from_features() (in

module lhotse.cut), 79
MANIFEST

lhotse-manifest-filter command
line option, 38

lhotse-manifest-split command line
option, 38

MANIFEST_DIR
lhotse-convert-kaldi command line

option, 40
MANIFESTS

lhotse-manifest-combine command
line option, 37

map() (lhotse.supervision.SupervisionSegment method),
50

map() (lhotse.supervision.SupervisionSet method), 51
map_supervisions() (lhotse.cut.Cut method), 71
map_supervisions() (lhotse.cut.CutSet method),

78
map_supervisions() (lhotse.cut.MixedCut

method), 75
map_supervisions() (lhotse.cut.PaddingCut

method), 72
Mfcc (class in lhotse.features.mfcc), 60
MfccConfig (class in lhotse.features.mfcc), 59
min_duration (lhotse.features.fbank.FbankConfig at-

tribute), 58
min_duration (lhotse.features.mfcc.MfccConfig at-

tribute), 60

Index 91

lhotse, Release 0.1

min_duration (lhotse.features.spectrogram.SpectrogramConfig
attribute), 61

mix() (in module lhotse.cut), 79
mix() (lhotse.cut.CutUtilsMixin method), 67
mix() (lhotse.features.base.FeatureExtractor static

method), 53
mix() (lhotse.features.fbank.Fbank static method), 59
mix() (lhotse.features.spectrogram.Spectrogram static

method), 61
mix_cuts() (in module lhotse.cut), 79
mix_same_recording_channels()

(lhotse.cut.CutSet method), 77
mixed_audio() (lhotse.audio.AudioMixer property),

49
mixed_cuts() (lhotse.cut.CutSet property), 75
mixed_feats() (lhotse.features.mixer.FeatureMixer

property), 67
MixedCut (class in lhotse.cut), 73
MixTrack (class in lhotse.cut), 72
module

lhotse.audio, 47
lhotse.augmentation, 67
lhotse.cut, 67
lhotse.dataset.diarization, 46
lhotse.dataset.source_separation, 44
lhotse.dataset.speech_recognition,

41
lhotse.dataset.unsupervised, 45
lhotse.dataset.vad, 46
lhotse.features.base, 53
lhotse.features.fbank, 58
lhotse.features.io, 62
lhotse.features.mfcc, 59
lhotse.features.mixer, 66
lhotse.features.spectrogram, 61
lhotse.kaldi, 80
lhotse.manipulation, 80
lhotse.recipes, 80
lhotse.supervision, 50

multi_supervision_collate_fn() (in module
lhotse.dataset.speech_recognition), 44

N
name (lhotse.features.base.FeatureExtractor attribute),

53
name (lhotse.features.fbank.Fbank attribute), 59
name (lhotse.features.io.LilcomFilesReader attribute),

64
name (lhotse.features.io.LilcomFilesWriter attribute), 64
name (lhotse.features.io.LilcomHdf5Reader attribute),

65
name (lhotse.features.io.LilcomHdf5Writer attribute), 66
name (lhotse.features.io.NumpyFilesReader attribute),

64

name (lhotse.features.io.NumpyFilesWriter attribute), 64
name (lhotse.features.io.NumpyHdf5Reader attribute),

65
name (lhotse.features.io.NumpyHdf5Writer attribute), 65
name (lhotse.features.mfcc.Mfcc attribute), 60
name (lhotse.features.spectrogram.Spectrogram at-

tribute), 61
name() (lhotse.features.io.FeaturesReader property), 63
name() (lhotse.features.io.FeaturesWriter property), 62
num_ceps (lhotse.features.mfcc.MfccConfig attribute),

60
num_channels() (lhotse.audio.Recording property),

48
num_channels() (lhotse.audio.RecordingSet

method), 49
num_features (lhotse.cut.PaddingCut attribute), 71
num_features (lhotse.features.base.Features at-

tribute), 56
num_features() (lhotse.cut.Cut property), 69
num_features() (lhotse.cut.MixedCut property), 73
num_features() (lhotse.features.mixer.FeatureMixer

property), 66
num_frames (lhotse.cut.PaddingCut attribute), 71
num_frames (lhotse.features.base.Features attribute),

56
num_frames() (lhotse.cut.Cut property), 69
num_frames() (lhotse.cut.MixedCut property), 73
num_mel_bins (lhotse.features.fbank.FbankConfig at-

tribute), 58
num_mel_bins (lhotse.features.mfcc.MfccConfig at-

tribute), 60
num_samples (lhotse.audio.Recording attribute), 47
num_samples (lhotse.cut.PaddingCut attribute), 71
num_samples() (lhotse.audio.RecordingSet method),

49
num_samples() (lhotse.cut.Cut property), 69
num_samples() (lhotse.cut.MixedCut property), 73
NUM_SPLITS

lhotse-manifest-split command line
option, 38

num_workers (lhotse.dataset.speech_recognition.K2DataLoader
attribute), 43

NumpyFilesReader (class in lhotse.features.io), 64
NumpyFilesWriter (class in lhotse.features.io), 64
NumpyHdf5Reader (class in lhotse.features.io), 65
NumpyHdf5Writer (class in lhotse.features.io), 65

O
offset (lhotse.cut.MixTrack attribute), 72
OUTPUT_CONFIG

lhotse-feat-write-default-config
command line option, 40

OUTPUT_CUT_MANIFEST

92 Index

lhotse, Release 0.1

lhotse-cut-append command line
option, 33

lhotse-cut-mix-by-recording-id
command line option, 34

lhotse-cut-mix-sequential command
line option, 34

lhotse-cut-pad command line option,
35

lhotse-cut-random-mixed command
line option, 35

lhotse-cut-simple command line
option, 36

lhotse-cut-truncate command line
option, 36

lhotse-cut-windowed command line
option, 37

OUTPUT_DIR
lhotse-feat-extract command line

option, 39
lhotse-manifest-split command line

option, 38
lhotse-prepare-broadcast-news

command line option, 31
lhotse-prepare-heroico command

line option, 31
lhotse-prepare-librimix command

line option, 32
lhotse-prepare-mini-librispeech

command line option, 32
lhotse-prepare-switchboard command

line option, 33
lhotse-prepare-tedlium command

line option, 33
OUTPUT_MANIFEST

lhotse-manifest-combine command
line option, 37

lhotse-manifest-filter command
line option, 38

P
pad() (lhotse.cut.Cut method), 70
pad() (lhotse.cut.CutSet method), 77
pad() (lhotse.cut.MixedCut method), 74
pad() (lhotse.cut.PaddingCut method), 72
PaddingCut (class in lhotse.cut), 71
pin_memory (lhotse.dataset.speech_recognition.K2DataLoader

attribute), 44
play_audio() (lhotse.cut.CutUtilsMixin method), 68
plot_audio() (lhotse.cut.CutUtilsMixin method), 68
plot_features() (lhotse.cut.CutUtilsMixin

method), 68
plot_tracks_audio() (lhotse.cut.MixedCut

method), 74

plot_tracks_features() (lhotse.cut.MixedCut
method), 74

PREDICATE
lhotse-manifest-filter command

line option, 38
preemphasis_coefficient

(lhotse.features.fbank.FbankConfig attribute),
58

preemphasis_coefficient
(lhotse.features.mfcc.MfccConfig attribute), 60

preemphasis_coefficient
(lhotse.features.spectrogram.SpectrogramConfig
attribute), 61

prefetch_factor (lhotse.dataset.speech_recognition.K2DataLoader
attribute), 44

PreMixedSourceSeparationDataset (class in
lhotse.dataset.source_separation), 45

process_and_store_recordings()
(lhotse.features.base.FeatureSetBuilder
method), 58

R
raw_energy (lhotse.features.fbank.FbankConfig at-

tribute), 58
raw_energy (lhotse.features.mfcc.MfccConfig at-

tribute), 60
raw_energy (lhotse.features.spectrogram.SpectrogramConfig

attribute), 61
read() (lhotse.features.io.FeaturesReader method), 63
read() (lhotse.features.io.LilcomFilesReader method),

64
read() (lhotse.features.io.LilcomHdf5Reader method),

65
read() (lhotse.features.io.NumpyFilesReader method),

64
read() (lhotse.features.io.NumpyHdf5Reader method),

65
read_audio() (in module lhotse.audio), 47
Recording (class in lhotse.audio), 47
recording (lhotse.cut.Cut attribute), 69
recording_id (lhotse.features.base.Features at-

tribute), 56
recording_id (lhotse.supervision.SupervisionSegment

attribute), 50
recording_id() (lhotse.cut.Cut property), 69
RECORDING_MANIFEST

lhotse-feat-extract command line
option, 39

recordings (lhotse.audio.RecordingSet attribute), 48
RecordingSet (class in lhotse.audio), 48
register_extractor() (in module

lhotse.features.base), 55
register_reader() (in module lhotse.features.io),

63

Index 93

lhotse, Release 0.1

register_writer() (in module lhotse.features.io),
63

remove_dc_offset (lhotse.features.fbank.FbankConfig
attribute), 58

remove_dc_offset (lhotse.features.mfcc.MfccConfig
attribute), 60

remove_dc_offset (lhotse.features.spectrogram.SpectrogramConfig
attribute), 61

round_to_power_of_two
(lhotse.features.fbank.FbankConfig attribute),
58

round_to_power_of_two
(lhotse.features.mfcc.MfccConfig attribute), 60

round_to_power_of_two
(lhotse.features.spectrogram.SpectrogramConfig
attribute), 61

S
sampler (lhotse.dataset.speech_recognition.K2DataLoader

attribute), 44
SAMPLING_RATE

lhotse-convert-kaldi command line
option, 40

sampling_rate (lhotse.audio.Recording attribute),
47

sampling_rate (lhotse.cut.PaddingCut attribute), 71
sampling_rate (lhotse.features.base.Features at-

tribute), 56
sampling_rate() (lhotse.audio.RecordingSet

method), 49
sampling_rate() (lhotse.cut.Cut property), 70
sampling_rate() (lhotse.cut.MixedCut property), 73
segments (lhotse.supervision.SupervisionSet attribute),

51
simple_cuts() (lhotse.cut.CutSet property), 75
snr (lhotse.cut.MixTrack attribute), 72
sort_by_duration() (lhotse.cut.CutSet method),

77
source (lhotse.audio.AudioSource attribute), 47
sources (lhotse.audio.Recording attribute), 47
SourceSeparationDataset (class in

lhotse.dataset.source_separation), 44
speaker (lhotse.supervision.SupervisionSegment at-

tribute), 50
speakers() (lhotse.cut.CutSet property), 76
speakers_audio_mask() (lhotse.cut.CutUtilsMixin

method), 68
speakers_feature_mask()

(lhotse.cut.CutUtilsMixin method), 68
Spectrogram (class in lhotse.features.spectrogram),

61
SpectrogramConfig (class in

lhotse.features.spectrogram), 61
SPEECH_DIR

lhotse-prepare-heroico command
line option, 31

SpeechRecognitionDataset (class in
lhotse.dataset.speech_recognition), 41

split() (lhotse.audio.RecordingSet method), 48
split() (lhotse.cut.CutSet method), 76
split() (lhotse.features.base.FeatureSet method), 57
split() (lhotse.supervision.SupervisionSet method),

51
start (lhotse.cut.Cut attribute), 69
start (lhotse.features.base.Features attribute), 56
start (lhotse.supervision.SupervisionSegment at-

tribute), 50
start() (lhotse.cut.MixedCut property), 73
start() (lhotse.cut.PaddingCut property), 71
storage_key (lhotse.features.base.Features attribute),

56
storage_path (lhotse.features.base.Features at-

tribute), 56
storage_path() (lhotse.features.io.FeaturesWriter

property), 62
storage_path() (lhotse.features.io.LilcomFilesWriter

property), 64
storage_path() (lhotse.features.io.LilcomHdf5Writer

property), 66
storage_path() (lhotse.features.io.NumpyFilesWriter

property), 64
storage_path() (lhotse.features.io.NumpyHdf5Writer

property), 65
storage_type (lhotse.features.base.Features at-

tribute), 56
store_feature_array() (in module

lhotse.features.base), 58
SUPERVISION_MANIFEST

lhotse-cut-random-mixed command
line option, 35

supervisions (lhotse.cut.Cut attribute), 69
supervisions() (lhotse.cut.MixedCut property), 73
supervisions() (lhotse.cut.PaddingCut property),

71
supervisions_audio_mask()

(lhotse.cut.CutUtilsMixin method), 68
supervisions_feature_mask()

(lhotse.cut.CutUtilsMixin method), 68
SupervisionSegment (class in lhotse.supervision),

50
SupervisionSet (class in lhotse.supervision), 51

T
TARGET_DIR

lhotse-obtain-heroico command line
option, 29

lhotse-obtain-librimix command
line option, 29

94 Index

lhotse, Release 0.1

lhotse-obtain-mini-librispeech
command line option, 30

lhotse-obtain-tedlium command line
option, 30

TEDLIUM_DIR
lhotse-prepare-tedlium command

line option, 33
text (lhotse.supervision.SupervisionSegment attribute),

50
timeout (lhotse.dataset.speech_recognition.K2DataLoader

attribute), 44
to_dicts() (lhotse.audio.RecordingSet method), 48
to_dicts() (lhotse.cut.CutSet method), 76
to_dicts() (lhotse.features.base.FeatureSet method),

57
to_dicts() (lhotse.supervision.SupervisionSet

method), 51
to_manifest() (in module lhotse.manipulation), 80
to_yaml() (lhotse.features.base.FeatureExtractor

method), 55
TorchaudioFeatureExtractor (class in

lhotse.features.base), 55
tracks (lhotse.cut.MixedCut attribute), 73
TRANSCRIPT_DIR

lhotse-prepare-broadcast-news
command line option, 31

lhotse-prepare-heroico command
line option, 31

transform_text() (lhotse.cut.CutSet method), 78
transform_text() (lhotse.supervision.SupervisionSegment

method), 51
transform_text() (lhotse.supervision.SupervisionSet

method), 52
trim() (lhotse.supervision.SupervisionSegment

method), 50
trim_to_supervisions() (lhotse.cut.CutSet

method), 76
trim_to_unsupervised_segments()

(lhotse.cut.CutSet method), 76
trimmed_supervisions()

(lhotse.cut.CutUtilsMixin property), 67
truncate() (lhotse.cut.Cut method), 70
truncate() (lhotse.cut.CutSet method), 77
truncate() (lhotse.cut.MixedCut method), 73
truncate() (lhotse.cut.PaddingCut method), 72
type (lhotse.audio.AudioSource attribute), 47
type (lhotse.features.base.Features attribute), 56

U
unmixed_audio() (lhotse.audio.AudioMixer prop-

erty), 49
unmixed_feats() (lhotse.features.mixer.FeatureMixer

property), 66

UnsupervisedDataset (class in
lhotse.dataset.unsupervised), 45

UnsupervisedWaveformDataset (class in
lhotse.dataset.unsupervised), 45

use_energy (lhotse.features.fbank.FbankConfig at-
tribute), 59

use_energy (lhotse.features.mfcc.MfccConfig at-
tribute), 60

use_log_energy (lhotse.cut.PaddingCut attribute),
71

V
VadDataset (class in lhotse.dataset.vad), 46
validate() (lhotse.dataset.source_separation.SourceSeparationDataset

method), 44
vtln_high (lhotse.features.fbank.FbankConfig at-

tribute), 59
vtln_high (lhotse.features.mfcc.MfccConfig attribute),

60
vtln_low (lhotse.features.fbank.FbankConfig at-

tribute), 59
vtln_low (lhotse.features.mfcc.MfccConfig attribute),

60
vtln_warp (lhotse.features.fbank.FbankConfig at-

tribute), 59
vtln_warp (lhotse.features.mfcc.MfccConfig attribute),

60

W
window_type (lhotse.features.fbank.FbankConfig at-

tribute), 58
window_type (lhotse.features.mfcc.MfccConfig at-

tribute), 60
window_type (lhotse.features.spectrogram.SpectrogramConfig

attribute), 61
with_features_path_prefix() (lhotse.cut.Cut

method), 71
with_features_path_prefix()

(lhotse.cut.CutSet method), 78
with_features_path_prefix()

(lhotse.cut.MixedCut method), 75
with_features_path_prefix()

(lhotse.cut.PaddingCut method), 72
with_id() (lhotse.cut.CutUtilsMixin method), 68
with_offset() (lhotse.supervision.SupervisionSegment

method), 50
with_path_prefix() (lhotse.audio.AudioSource

method), 47
with_path_prefix() (lhotse.audio.Recording

method), 48
with_path_prefix() (lhotse.audio.RecordingSet

method), 49
with_path_prefix() (lhotse.features.base.Features

method), 56

Index 95

lhotse, Release 0.1

with_path_prefix()
(lhotse.features.base.FeatureSet method),
57

with_recording_path_prefix() (lhotse.cut.Cut
method), 71

with_recording_path_prefix()
(lhotse.cut.CutSet method), 78

with_recording_path_prefix()
(lhotse.cut.MixedCut method), 75

with_recording_path_prefix()
(lhotse.cut.PaddingCut method), 72

write() (lhotse.features.io.FeaturesWriter method), 62
write() (lhotse.features.io.LilcomFilesWriter method),

64
write() (lhotse.features.io.LilcomHdf5Writer method),

66
write() (lhotse.features.io.NumpyFilesWriter method),

64
write() (lhotse.features.io.NumpyHdf5Writer

method), 65

96 Index

	Getting started
	About
	Installation
	Examples

	Representing a corpus
	Recording manifest
	Supervision manifest
	Standard data preparation recipes
	Adding new corpora

	Cuts
	Overview
	Types of cuts
	Cut manifests
	Python
	CLI

	Feature extraction
	Storing features
	Creating custom feature extractor
	Storage backend details
	Python usage
	CLI usage
	Kaldi compatibility caveats

	Augmentation
	Python usage
	CLI usage

	PyTorch Datasets
	Kaldi Interoperability
	Python
	CLI

	Command-line interface
	lhotse obtain
	lhotse prepare
	lhotse cut
	lhotse manifest
	lhotse feat
	lhotse convert-kaldi

	API Reference
	Datasets
	Recording manifests
	Supervision manifests
	Feature extraction and manifests
	Augmentation
	Cuts
	Recipes
	Kaldi conversion
	Others

	Indices and tables
	Python Module Index
	Index

